Support for Llama3.2 models and Swift SDK (#98)

This commit is contained in:
Ashwin Bharambe 2024-09-25 10:29:58 -07:00 committed by GitHub
parent 95abbf576b
commit 56aed59eb4
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
56 changed files with 3745 additions and 630 deletions

View file

@ -0,0 +1,548 @@
// !$*UTF8*$!
{
archiveVersion = 1;
classes = {
};
objectVersion = 60;
objects = {
/* Begin PBXBuildFile section */
5C03561F2CA3AB9600E3BB46 /* LlamaStackClient in Frameworks */ = {isa = PBXBuildFile; productRef = 5C03561E2CA3AB9600E3BB46 /* LlamaStackClient */; };
5C5B6E212CA3D89F00AF6130 /* LlamaStackClient in Frameworks */ = {isa = PBXBuildFile; productRef = 5C5B6E202CA3D89F00AF6130 /* LlamaStackClient */; };
5CCBC60C2CA1F04A00E958D0 /* LocalInference.h in Headers */ = {isa = PBXBuildFile; fileRef = 5CCBC60B2CA1F04A00E958D0 /* LocalInference.h */; settings = {ATTRIBUTES = (Public, ); }; };
5CCBC6752CA1F45800E958D0 /* executorch_debug in Frameworks */ = {isa = PBXBuildFile; productRef = 5CCBC6742CA1F45800E958D0 /* executorch_debug */; };
5CCBC6862CA1F64A00E958D0 /* LLaMARunner.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = 5CCBC6802CA1F63F00E958D0 /* LLaMARunner.framework */; platformFilter = ios; };
5CCBC6872CA1F64A00E958D0 /* LLaMARunner.framework in Embed Frameworks */ = {isa = PBXBuildFile; fileRef = 5CCBC6802CA1F63F00E958D0 /* LLaMARunner.framework */; platformFilter = ios; settings = {ATTRIBUTES = (CodeSignOnCopy, RemoveHeadersOnCopy, ); }; };
5CCBC68D2CA1F7A100E958D0 /* PromptTemplate.swift in Sources */ = {isa = PBXBuildFile; fileRef = 5CCBC6892CA1F7A000E958D0 /* PromptTemplate.swift */; };
5CCBC68E2CA1F7A100E958D0 /* LocalInference.swift in Sources */ = {isa = PBXBuildFile; fileRef = 5CCBC68A2CA1F7A000E958D0 /* LocalInference.swift */; };
5CCBC68F2CA1F7A100E958D0 /* Parsing.swift in Sources */ = {isa = PBXBuildFile; fileRef = 5CCBC68B2CA1F7A000E958D0 /* Parsing.swift */; };
5CCBC6902CA1F7A100E958D0 /* SystemPrompts.swift in Sources */ = {isa = PBXBuildFile; fileRef = 5CCBC68C2CA1F7A100E958D0 /* SystemPrompts.swift */; };
5CCBC6932CA1F7D000E958D0 /* Stencil in Frameworks */ = {isa = PBXBuildFile; productRef = 5CCBC6922CA1F7D000E958D0 /* Stencil */; };
/* End PBXBuildFile section */
/* Begin PBXContainerItemProxy section */
5CCBC67D2CA1F63F00E958D0 /* PBXContainerItemProxy */ = {
isa = PBXContainerItemProxy;
containerPortal = 5CCBC6762CA1F63F00E958D0 /* LLaMA.xcodeproj */;
proxyType = 2;
remoteGlobalIDString = 036CAF9D2BB1444500D6C2D5;
remoteInfo = LLaMA;
};
5CCBC67F2CA1F63F00E958D0 /* PBXContainerItemProxy */ = {
isa = PBXContainerItemProxy;
containerPortal = 5CCBC6762CA1F63F00E958D0 /* LLaMA.xcodeproj */;
proxyType = 2;
remoteGlobalIDString = 03729ED52BB1F8DE00152F2E;
remoteInfo = LLaMARunner;
};
5CCBC69E2CA2036B00E958D0 /* PBXContainerItemProxy */ = {
isa = PBXContainerItemProxy;
containerPortal = 5CCBC6762CA1F63F00E958D0 /* LLaMA.xcodeproj */;
proxyType = 2;
remoteGlobalIDString = 5CCBC6982CA2036A00E958D0;
remoteInfo = LLaMAPerfBenchmark;
};
5CCBC6A02CA2036B00E958D0 /* PBXContainerItemProxy */ = {
isa = PBXContainerItemProxy;
containerPortal = 5CCBC6762CA1F63F00E958D0 /* LLaMA.xcodeproj */;
proxyType = 2;
remoteGlobalIDString = 5CCBC6992CA2036A00E958D0;
remoteInfo = LLaMAPerfBenchmarkTests;
};
/* End PBXContainerItemProxy section */
/* Begin PBXCopyFilesBuildPhase section */
5CCBC6882CA1F64A00E958D0 /* Embed Frameworks */ = {
isa = PBXCopyFilesBuildPhase;
buildActionMask = 2147483647;
dstPath = "";
dstSubfolderSpec = 10;
files = (
5CCBC6872CA1F64A00E958D0 /* LLaMARunner.framework in Embed Frameworks */,
);
name = "Embed Frameworks";
runOnlyForDeploymentPostprocessing = 0;
};
/* End PBXCopyFilesBuildPhase section */
/* Begin PBXFileReference section */
5CCBC6082CA1F04A00E958D0 /* LocalInference.framework */ = {isa = PBXFileReference; explicitFileType = wrapper.framework; includeInIndex = 0; path = LocalInference.framework; sourceTree = BUILT_PRODUCTS_DIR; };
5CCBC60B2CA1F04A00E958D0 /* LocalInference.h */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.h; path = LocalInference.h; sourceTree = "<group>"; };
5CCBC6762CA1F63F00E958D0 /* LLaMA.xcodeproj */ = {isa = PBXFileReference; lastKnownFileType = "wrapper.pb-project"; name = LLaMA.xcodeproj; path = "executorch/examples/demo-apps/apple_ios/LLaMA/LLaMA.xcodeproj"; sourceTree = "<group>"; };
5CCBC6892CA1F7A000E958D0 /* PromptTemplate.swift */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.swift; path = PromptTemplate.swift; sourceTree = "<group>"; };
5CCBC68A2CA1F7A000E958D0 /* LocalInference.swift */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.swift; path = LocalInference.swift; sourceTree = "<group>"; };
5CCBC68B2CA1F7A000E958D0 /* Parsing.swift */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.swift; path = Parsing.swift; sourceTree = "<group>"; };
5CCBC68C2CA1F7A100E958D0 /* SystemPrompts.swift */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.swift; path = SystemPrompts.swift; sourceTree = "<group>"; };
/* End PBXFileReference section */
/* Begin PBXFrameworksBuildPhase section */
5CCBC6052CA1F04A00E958D0 /* Frameworks */ = {
isa = PBXFrameworksBuildPhase;
buildActionMask = 2147483647;
files = (
5C03561F2CA3AB9600E3BB46 /* LlamaStackClient in Frameworks */,
5C5B6E212CA3D89F00AF6130 /* LlamaStackClient in Frameworks */,
5CCBC6932CA1F7D000E958D0 /* Stencil in Frameworks */,
5CCBC6862CA1F64A00E958D0 /* LLaMARunner.framework in Frameworks */,
5CCBC6752CA1F45800E958D0 /* executorch_debug in Frameworks */,
);
runOnlyForDeploymentPostprocessing = 0;
};
/* End PBXFrameworksBuildPhase section */
/* Begin PBXGroup section */
5CCBC5FE2CA1F04A00E958D0 = {
isa = PBXGroup;
children = (
5CCBC6762CA1F63F00E958D0 /* LLaMA.xcodeproj */,
5CCBC60A2CA1F04A00E958D0 /* LocalInference */,
5CCBC6092CA1F04A00E958D0 /* Products */,
5CCBC6852CA1F64A00E958D0 /* Frameworks */,
);
sourceTree = "<group>";
};
5CCBC6092CA1F04A00E958D0 /* Products */ = {
isa = PBXGroup;
children = (
5CCBC6082CA1F04A00E958D0 /* LocalInference.framework */,
);
name = Products;
sourceTree = "<group>";
};
5CCBC60A2CA1F04A00E958D0 /* LocalInference */ = {
isa = PBXGroup;
children = (
5CCBC68A2CA1F7A000E958D0 /* LocalInference.swift */,
5CCBC68B2CA1F7A000E958D0 /* Parsing.swift */,
5CCBC6892CA1F7A000E958D0 /* PromptTemplate.swift */,
5CCBC68C2CA1F7A100E958D0 /* SystemPrompts.swift */,
5CCBC60B2CA1F04A00E958D0 /* LocalInference.h */,
);
path = LocalInference;
sourceTree = "<group>";
};
5CCBC6772CA1F63F00E958D0 /* Products */ = {
isa = PBXGroup;
children = (
5CCBC67E2CA1F63F00E958D0 /* LLaMA.app */,
5CCBC6802CA1F63F00E958D0 /* LLaMARunner.framework */,
5CCBC69F2CA2036B00E958D0 /* LLaMAPerfBenchmark.app */,
5CCBC6A12CA2036B00E958D0 /* LLaMAPerfBenchmarkTests.xctest */,
);
name = Products;
sourceTree = "<group>";
};
5CCBC6852CA1F64A00E958D0 /* Frameworks */ = {
isa = PBXGroup;
children = (
);
name = Frameworks;
sourceTree = "<group>";
};
/* End PBXGroup section */
/* Begin PBXHeadersBuildPhase section */
5CCBC6032CA1F04A00E958D0 /* Headers */ = {
isa = PBXHeadersBuildPhase;
buildActionMask = 2147483647;
files = (
5CCBC60C2CA1F04A00E958D0 /* LocalInference.h in Headers */,
);
runOnlyForDeploymentPostprocessing = 0;
};
/* End PBXHeadersBuildPhase section */
/* Begin PBXNativeTarget section */
5CCBC6072CA1F04A00E958D0 /* LocalInference */ = {
isa = PBXNativeTarget;
buildConfigurationList = 5CCBC60F2CA1F04A00E958D0 /* Build configuration list for PBXNativeTarget "LocalInference" */;
buildPhases = (
5CCBC6032CA1F04A00E958D0 /* Headers */,
5CCBC6042CA1F04A00E958D0 /* Sources */,
5CCBC6052CA1F04A00E958D0 /* Frameworks */,
5CCBC6062CA1F04A00E958D0 /* Resources */,
5CCBC6882CA1F64A00E958D0 /* Embed Frameworks */,
);
buildRules = (
);
dependencies = (
);
name = LocalInference;
packageProductDependencies = (
5CCBC6742CA1F45800E958D0 /* executorch_debug */,
5CCBC6922CA1F7D000E958D0 /* Stencil */,
5C03561E2CA3AB9600E3BB46 /* LlamaStackClient */,
5C5B6E202CA3D89F00AF6130 /* LlamaStackClient */,
);
productName = LocalInferenceProvider;
productReference = 5CCBC6082CA1F04A00E958D0 /* LocalInference.framework */;
productType = "com.apple.product-type.framework";
};
/* End PBXNativeTarget section */
/* Begin PBXProject section */
5CCBC5FF2CA1F04A00E958D0 /* Project object */ = {
isa = PBXProject;
attributes = {
BuildIndependentTargetsInParallel = 1;
LastUpgradeCheck = 1540;
TargetAttributes = {
5CCBC6072CA1F04A00E958D0 = {
CreatedOnToolsVersion = 15.4;
LastSwiftMigration = 1540;
};
};
};
buildConfigurationList = 5CCBC6022CA1F04A00E958D0 /* Build configuration list for PBXProject "LocalInference" */;
compatibilityVersion = "Xcode 14.0";
developmentRegion = en;
hasScannedForEncodings = 0;
knownRegions = (
en,
Base,
);
mainGroup = 5CCBC5FE2CA1F04A00E958D0;
packageReferences = (
5CCBC6732CA1F45800E958D0 /* XCRemoteSwiftPackageReference "executorch" */,
5CCBC6912CA1F7D000E958D0 /* XCRemoteSwiftPackageReference "Stencil" */,
5C5B6E1F2CA3D89F00AF6130 /* XCLocalSwiftPackageReference "internal-llama-stack-client-swift" */,
);
productRefGroup = 5CCBC6092CA1F04A00E958D0 /* Products */;
projectDirPath = "";
projectReferences = (
{
ProductGroup = 5CCBC6772CA1F63F00E958D0 /* Products */;
ProjectRef = 5CCBC6762CA1F63F00E958D0 /* LLaMA.xcodeproj */;
},
);
projectRoot = "";
targets = (
5CCBC6072CA1F04A00E958D0 /* LocalInference */,
);
};
/* End PBXProject section */
/* Begin PBXReferenceProxy section */
5CCBC67E2CA1F63F00E958D0 /* LLaMA.app */ = {
isa = PBXReferenceProxy;
fileType = wrapper.application;
path = LLaMA.app;
remoteRef = 5CCBC67D2CA1F63F00E958D0 /* PBXContainerItemProxy */;
sourceTree = BUILT_PRODUCTS_DIR;
};
5CCBC6802CA1F63F00E958D0 /* LLaMARunner.framework */ = {
isa = PBXReferenceProxy;
fileType = wrapper.framework;
path = LLaMARunner.framework;
remoteRef = 5CCBC67F2CA1F63F00E958D0 /* PBXContainerItemProxy */;
sourceTree = BUILT_PRODUCTS_DIR;
};
5CCBC69F2CA2036B00E958D0 /* LLaMAPerfBenchmark.app */ = {
isa = PBXReferenceProxy;
fileType = wrapper.application;
path = LLaMAPerfBenchmark.app;
remoteRef = 5CCBC69E2CA2036B00E958D0 /* PBXContainerItemProxy */;
sourceTree = BUILT_PRODUCTS_DIR;
};
5CCBC6A12CA2036B00E958D0 /* LLaMAPerfBenchmarkTests.xctest */ = {
isa = PBXReferenceProxy;
fileType = wrapper.cfbundle;
path = LLaMAPerfBenchmarkTests.xctest;
remoteRef = 5CCBC6A02CA2036B00E958D0 /* PBXContainerItemProxy */;
sourceTree = BUILT_PRODUCTS_DIR;
};
/* End PBXReferenceProxy section */
/* Begin PBXResourcesBuildPhase section */
5CCBC6062CA1F04A00E958D0 /* Resources */ = {
isa = PBXResourcesBuildPhase;
buildActionMask = 2147483647;
files = (
);
runOnlyForDeploymentPostprocessing = 0;
};
/* End PBXResourcesBuildPhase section */
/* Begin PBXSourcesBuildPhase section */
5CCBC6042CA1F04A00E958D0 /* Sources */ = {
isa = PBXSourcesBuildPhase;
buildActionMask = 2147483647;
files = (
5CCBC6902CA1F7A100E958D0 /* SystemPrompts.swift in Sources */,
5CCBC68D2CA1F7A100E958D0 /* PromptTemplate.swift in Sources */,
5CCBC68F2CA1F7A100E958D0 /* Parsing.swift in Sources */,
5CCBC68E2CA1F7A100E958D0 /* LocalInference.swift in Sources */,
);
runOnlyForDeploymentPostprocessing = 0;
};
/* End PBXSourcesBuildPhase section */
/* Begin XCBuildConfiguration section */
5CCBC60D2CA1F04A00E958D0 /* Debug */ = {
isa = XCBuildConfiguration;
buildSettings = {
ALWAYS_SEARCH_USER_PATHS = NO;
ASSETCATALOG_COMPILER_GENERATE_SWIFT_ASSET_SYMBOL_EXTENSIONS = YES;
CLANG_ANALYZER_NONNULL = YES;
CLANG_ANALYZER_NUMBER_OBJECT_CONVERSION = YES_AGGRESSIVE;
CLANG_CXX_LANGUAGE_STANDARD = "gnu++20";
CLANG_ENABLE_MODULES = YES;
CLANG_ENABLE_OBJC_ARC = YES;
CLANG_ENABLE_OBJC_WEAK = YES;
CLANG_WARN_BLOCK_CAPTURE_AUTORELEASING = YES;
CLANG_WARN_BOOL_CONVERSION = YES;
CLANG_WARN_COMMA = YES;
CLANG_WARN_CONSTANT_CONVERSION = YES;
CLANG_WARN_DEPRECATED_OBJC_IMPLEMENTATIONS = YES;
CLANG_WARN_DIRECT_OBJC_ISA_USAGE = YES_ERROR;
CLANG_WARN_DOCUMENTATION_COMMENTS = YES;
CLANG_WARN_EMPTY_BODY = YES;
CLANG_WARN_ENUM_CONVERSION = YES;
CLANG_WARN_INFINITE_RECURSION = YES;
CLANG_WARN_INT_CONVERSION = YES;
CLANG_WARN_NON_LITERAL_NULL_CONVERSION = YES;
CLANG_WARN_OBJC_IMPLICIT_RETAIN_SELF = YES;
CLANG_WARN_OBJC_LITERAL_CONVERSION = YES;
CLANG_WARN_OBJC_ROOT_CLASS = YES_ERROR;
CLANG_WARN_QUOTED_INCLUDE_IN_FRAMEWORK_HEADER = YES;
CLANG_WARN_RANGE_LOOP_ANALYSIS = YES;
CLANG_WARN_STRICT_PROTOTYPES = YES;
CLANG_WARN_SUSPICIOUS_MOVE = YES;
CLANG_WARN_UNGUARDED_AVAILABILITY = YES_AGGRESSIVE;
CLANG_WARN_UNREACHABLE_CODE = YES;
CLANG_WARN__DUPLICATE_METHOD_MATCH = YES;
COPY_PHASE_STRIP = NO;
CURRENT_PROJECT_VERSION = 1;
DEBUG_INFORMATION_FORMAT = dwarf;
ENABLE_STRICT_OBJC_MSGSEND = YES;
ENABLE_TESTABILITY = YES;
ENABLE_USER_SCRIPT_SANDBOXING = YES;
GCC_C_LANGUAGE_STANDARD = gnu17;
GCC_DYNAMIC_NO_PIC = NO;
GCC_NO_COMMON_BLOCKS = YES;
GCC_OPTIMIZATION_LEVEL = 0;
GCC_PREPROCESSOR_DEFINITIONS = (
"DEBUG=1",
"$(inherited)",
);
GCC_WARN_64_TO_32_BIT_CONVERSION = YES;
GCC_WARN_ABOUT_RETURN_TYPE = YES_ERROR;
GCC_WARN_UNDECLARED_SELECTOR = YES;
GCC_WARN_UNINITIALIZED_AUTOS = YES_AGGRESSIVE;
GCC_WARN_UNUSED_FUNCTION = YES;
GCC_WARN_UNUSED_VARIABLE = YES;
IPHONEOS_DEPLOYMENT_TARGET = 17.5;
LOCALIZATION_PREFERS_STRING_CATALOGS = YES;
MTL_ENABLE_DEBUG_INFO = INCLUDE_SOURCE;
MTL_FAST_MATH = YES;
ONLY_ACTIVE_ARCH = YES;
SDKROOT = iphoneos;
SWIFT_ACTIVE_COMPILATION_CONDITIONS = "DEBUG $(inherited)";
SWIFT_OPTIMIZATION_LEVEL = "-Onone";
VERSIONING_SYSTEM = "apple-generic";
VERSION_INFO_PREFIX = "";
};
name = Debug;
};
5CCBC60E2CA1F04A00E958D0 /* Release */ = {
isa = XCBuildConfiguration;
buildSettings = {
ALWAYS_SEARCH_USER_PATHS = NO;
ASSETCATALOG_COMPILER_GENERATE_SWIFT_ASSET_SYMBOL_EXTENSIONS = YES;
CLANG_ANALYZER_NONNULL = YES;
CLANG_ANALYZER_NUMBER_OBJECT_CONVERSION = YES_AGGRESSIVE;
CLANG_CXX_LANGUAGE_STANDARD = "gnu++20";
CLANG_ENABLE_MODULES = YES;
CLANG_ENABLE_OBJC_ARC = YES;
CLANG_ENABLE_OBJC_WEAK = YES;
CLANG_WARN_BLOCK_CAPTURE_AUTORELEASING = YES;
CLANG_WARN_BOOL_CONVERSION = YES;
CLANG_WARN_COMMA = YES;
CLANG_WARN_CONSTANT_CONVERSION = YES;
CLANG_WARN_DEPRECATED_OBJC_IMPLEMENTATIONS = YES;
CLANG_WARN_DIRECT_OBJC_ISA_USAGE = YES_ERROR;
CLANG_WARN_DOCUMENTATION_COMMENTS = YES;
CLANG_WARN_EMPTY_BODY = YES;
CLANG_WARN_ENUM_CONVERSION = YES;
CLANG_WARN_INFINITE_RECURSION = YES;
CLANG_WARN_INT_CONVERSION = YES;
CLANG_WARN_NON_LITERAL_NULL_CONVERSION = YES;
CLANG_WARN_OBJC_IMPLICIT_RETAIN_SELF = YES;
CLANG_WARN_OBJC_LITERAL_CONVERSION = YES;
CLANG_WARN_OBJC_ROOT_CLASS = YES_ERROR;
CLANG_WARN_QUOTED_INCLUDE_IN_FRAMEWORK_HEADER = YES;
CLANG_WARN_RANGE_LOOP_ANALYSIS = YES;
CLANG_WARN_STRICT_PROTOTYPES = YES;
CLANG_WARN_SUSPICIOUS_MOVE = YES;
CLANG_WARN_UNGUARDED_AVAILABILITY = YES_AGGRESSIVE;
CLANG_WARN_UNREACHABLE_CODE = YES;
CLANG_WARN__DUPLICATE_METHOD_MATCH = YES;
COPY_PHASE_STRIP = NO;
CURRENT_PROJECT_VERSION = 1;
DEBUG_INFORMATION_FORMAT = "dwarf-with-dsym";
ENABLE_NS_ASSERTIONS = NO;
ENABLE_STRICT_OBJC_MSGSEND = YES;
ENABLE_USER_SCRIPT_SANDBOXING = YES;
GCC_C_LANGUAGE_STANDARD = gnu17;
GCC_NO_COMMON_BLOCKS = YES;
GCC_WARN_64_TO_32_BIT_CONVERSION = YES;
GCC_WARN_ABOUT_RETURN_TYPE = YES_ERROR;
GCC_WARN_UNDECLARED_SELECTOR = YES;
GCC_WARN_UNINITIALIZED_AUTOS = YES_AGGRESSIVE;
GCC_WARN_UNUSED_FUNCTION = YES;
GCC_WARN_UNUSED_VARIABLE = YES;
IPHONEOS_DEPLOYMENT_TARGET = 17.5;
LOCALIZATION_PREFERS_STRING_CATALOGS = YES;
MTL_ENABLE_DEBUG_INFO = NO;
MTL_FAST_MATH = YES;
SDKROOT = iphoneos;
SWIFT_COMPILATION_MODE = wholemodule;
VALIDATE_PRODUCT = YES;
VERSIONING_SYSTEM = "apple-generic";
VERSION_INFO_PREFIX = "";
};
name = Release;
};
5CCBC6102CA1F04A00E958D0 /* Debug */ = {
isa = XCBuildConfiguration;
buildSettings = {
BUILD_LIBRARY_FOR_DISTRIBUTION = YES;
CLANG_ENABLE_MODULES = YES;
CODE_SIGN_STYLE = Automatic;
CURRENT_PROJECT_VERSION = 1;
DEFINES_MODULE = YES;
DYLIB_COMPATIBILITY_VERSION = 1;
DYLIB_CURRENT_VERSION = 1;
DYLIB_INSTALL_NAME_BASE = "@rpath";
ENABLE_MODULE_VERIFIER = YES;
GENERATE_INFOPLIST_FILE = YES;
HEADER_SEARCH_PATHS = "";
INFOPLIST_KEY_NSHumanReadableCopyright = "";
INSTALL_PATH = "$(LOCAL_LIBRARY_DIR)/Frameworks";
LD_RUNPATH_SEARCH_PATHS = (
"$(inherited)",
"@executable_path/Frameworks",
"@loader_path/Frameworks",
);
MARKETING_VERSION = 1.0;
MODULE_VERIFIER_SUPPORTED_LANGUAGES = "objective-c objective-c++";
MODULE_VERIFIER_SUPPORTED_LANGUAGE_STANDARDS = "gnu17 gnu++20";
OTHER_LDFLAGS = "";
PRODUCT_BUNDLE_IDENTIFIER = meta.llamatsack.LocalInferenceProvider;
PRODUCT_NAME = "$(TARGET_NAME:c99extidentifier)";
SKIP_INSTALL = YES;
SWIFT_EMIT_LOC_STRINGS = YES;
SWIFT_INSTALL_OBJC_HEADER = NO;
SWIFT_OPTIMIZATION_LEVEL = "-Onone";
SWIFT_VERSION = 5.0;
TARGETED_DEVICE_FAMILY = "1,2";
};
name = Debug;
};
5CCBC6112CA1F04A00E958D0 /* Release */ = {
isa = XCBuildConfiguration;
buildSettings = {
BUILD_LIBRARY_FOR_DISTRIBUTION = YES;
CLANG_ENABLE_MODULES = YES;
CODE_SIGN_STYLE = Automatic;
CURRENT_PROJECT_VERSION = 1;
DEFINES_MODULE = YES;
DYLIB_COMPATIBILITY_VERSION = 1;
DYLIB_CURRENT_VERSION = 1;
DYLIB_INSTALL_NAME_BASE = "@rpath";
ENABLE_MODULE_VERIFIER = YES;
GENERATE_INFOPLIST_FILE = YES;
HEADER_SEARCH_PATHS = "";
INFOPLIST_KEY_NSHumanReadableCopyright = "";
INSTALL_PATH = "$(LOCAL_LIBRARY_DIR)/Frameworks";
LD_RUNPATH_SEARCH_PATHS = (
"$(inherited)",
"@executable_path/Frameworks",
"@loader_path/Frameworks",
);
MARKETING_VERSION = 1.0;
MODULE_VERIFIER_SUPPORTED_LANGUAGES = "objective-c objective-c++";
MODULE_VERIFIER_SUPPORTED_LANGUAGE_STANDARDS = "gnu17 gnu++20";
OTHER_LDFLAGS = "";
PRODUCT_BUNDLE_IDENTIFIER = meta.llamatsack.LocalInferenceProvider;
PRODUCT_NAME = "$(TARGET_NAME:c99extidentifier)";
SKIP_INSTALL = YES;
SWIFT_EMIT_LOC_STRINGS = YES;
SWIFT_INSTALL_OBJC_HEADER = NO;
SWIFT_VERSION = 5.0;
TARGETED_DEVICE_FAMILY = "1,2";
};
name = Release;
};
/* End XCBuildConfiguration section */
/* Begin XCConfigurationList section */
5CCBC6022CA1F04A00E958D0 /* Build configuration list for PBXProject "LocalInference" */ = {
isa = XCConfigurationList;
buildConfigurations = (
5CCBC60D2CA1F04A00E958D0 /* Debug */,
5CCBC60E2CA1F04A00E958D0 /* Release */,
);
defaultConfigurationIsVisible = 0;
defaultConfigurationName = Release;
};
5CCBC60F2CA1F04A00E958D0 /* Build configuration list for PBXNativeTarget "LocalInference" */ = {
isa = XCConfigurationList;
buildConfigurations = (
5CCBC6102CA1F04A00E958D0 /* Debug */,
5CCBC6112CA1F04A00E958D0 /* Release */,
);
defaultConfigurationIsVisible = 0;
defaultConfigurationName = Release;
};
/* End XCConfigurationList section */
/* Begin XCLocalSwiftPackageReference section */
5C5B6E1F2CA3D89F00AF6130 /* XCLocalSwiftPackageReference "internal-llama-stack-client-swift" */ = {
isa = XCLocalSwiftPackageReference;
relativePath = "internal-llama-stack-client-swift";
};
/* End XCLocalSwiftPackageReference section */
/* Begin XCRemoteSwiftPackageReference section */
5CCBC6732CA1F45800E958D0 /* XCRemoteSwiftPackageReference "executorch" */ = {
isa = XCRemoteSwiftPackageReference;
repositoryURL = "https://github.com/pytorch/executorch";
requirement = {
branch = latest;
kind = branch;
};
};
5CCBC6912CA1F7D000E958D0 /* XCRemoteSwiftPackageReference "Stencil" */ = {
isa = XCRemoteSwiftPackageReference;
repositoryURL = "https://github.com/stencilproject/Stencil";
requirement = {
kind = upToNextMajorVersion;
minimumVersion = 0.15.1;
};
};
/* End XCRemoteSwiftPackageReference section */
/* Begin XCSwiftPackageProductDependency section */
5C03561E2CA3AB9600E3BB46 /* LlamaStackClient */ = {
isa = XCSwiftPackageProductDependency;
productName = LlamaStackClient;
};
5C5B6E202CA3D89F00AF6130 /* LlamaStackClient */ = {
isa = XCSwiftPackageProductDependency;
productName = LlamaStackClient;
};
5CCBC6742CA1F45800E958D0 /* executorch_debug */ = {
isa = XCSwiftPackageProductDependency;
package = 5CCBC6732CA1F45800E958D0 /* XCRemoteSwiftPackageReference "executorch" */;
productName = executorch_debug;
};
5CCBC6922CA1F7D000E958D0 /* Stencil */ = {
isa = XCSwiftPackageProductDependency;
package = 5CCBC6912CA1F7D000E958D0 /* XCRemoteSwiftPackageReference "Stencil" */;
productName = Stencil;
};
/* End XCSwiftPackageProductDependency section */
};
rootObject = 5CCBC5FF2CA1F04A00E958D0 /* Project object */;
}

View file

@ -0,0 +1,7 @@
<?xml version="1.0" encoding="UTF-8"?>
<Workspace
version = "1.0">
<FileRef
location = "self:">
</FileRef>
</Workspace>

View file

@ -0,0 +1,8 @@
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>IDEDidComputeMac32BitWarning</key>
<true/>
</dict>
</plist>

View file

@ -0,0 +1,16 @@
//
// LocalInference.h
// LocalInference
//
// Created by Dalton Flanagan on 9/23/24.
//
#import <Foundation/Foundation.h>
//! Project version number for LocalInference.
FOUNDATION_EXPORT double LocalInferenceVersionNumber;
//! Project version string for LocalInference.
FOUNDATION_EXPORT const unsigned char LocalInferenceVersionString[];
// In this header, you should import all the public headers of your framework using statements like #import <LocalInference/PublicHeader.h>

View file

@ -0,0 +1,167 @@
import Foundation
import LLaMARunner
import LlamaStackClient
class RunnerHolder: ObservableObject {
var runner: Runner?
}
public class LocalInference: Inference {
private var runnerHolder = RunnerHolder()
private let runnerQueue: DispatchQueue
public init (queue: DispatchQueue) {
runnerQueue = queue
}
public func loadModel(modelPath: String, tokenizerPath: String, completion: @escaping (Result<Void, Error>) -> Void) {
runnerHolder.runner = runnerHolder.runner ?? Runner(
modelPath: modelPath,
tokenizerPath: tokenizerPath
)
runnerQueue.async {
let runner = self.runnerHolder.runner
do {
try runner!.load()
completion(.success(()))
} catch let loadError {
print("error: " + loadError.localizedDescription)
completion(.failure(loadError))
}
}
}
public func chatCompletion(request: Components.Schemas.ChatCompletionRequest) -> AsyncStream<Components.Schemas.ChatCompletionResponseStreamChunk> {
return AsyncStream { continuation in
runnerQueue.async {
do {
var tokens: [String] = []
let prompt = try encodeDialogPrompt(messages: prepareMessages(request: request))
var stopReason: Components.Schemas.StopReason? = nil
var buffer = ""
var ipython = false
var echoDropped = false
try self.runnerHolder.runner?.generate(prompt, sequenceLength: 4096) { token in
buffer += token
// HACK: Workaround until LlamaRunner exposes echo param
if (!echoDropped) {
if (buffer.hasPrefix(prompt)) {
buffer = String(buffer.dropFirst(prompt.count))
echoDropped = true
}
return
}
tokens.append(token)
if !ipython && (buffer.starts(with: "<|python_tag|>") || buffer.starts(with: "[") ) {
ipython = true
continuation.yield(
Components.Schemas.ChatCompletionResponseStreamChunk(
event: Components.Schemas.ChatCompletionResponseEvent(
delta: .ToolCallDelta(Components.Schemas.ToolCallDelta(
content: .case1(""),
parse_status: Components.Schemas.ToolCallParseStatus.started
)
),
event_type: .progress
)
)
)
if (buffer.starts(with: "<|python_tag|>")) {
buffer = String(buffer.dropFirst("<|python_tag|>".count))
}
}
// TODO: Non-streaming lobprobs
var text = ""
if token == "<|eot_id|>" {
stopReason = Components.Schemas.StopReason.end_of_turn
} else if token == "<|eom_id|>" {
stopReason = Components.Schemas.StopReason.end_of_message
} else {
text = token
}
var delta: Components.Schemas.ChatCompletionResponseEvent.deltaPayload
if ipython {
delta = .ToolCallDelta(Components.Schemas.ToolCallDelta(
content: .case1(text),
parse_status: .in_progress
))
} else {
delta = .case1(text)
}
if stopReason == nil {
continuation.yield(
Components.Schemas.ChatCompletionResponseStreamChunk(
event: Components.Schemas.ChatCompletionResponseEvent(
delta: delta,
event_type: .progress
)
)
)
}
}
if stopReason == nil {
stopReason = Components.Schemas.StopReason.out_of_tokens
}
let message = decodeAssistantMessage(tokens: tokens.joined(), stopReason: stopReason!)
// TODO: non-streaming support
let didParseToolCalls = message.tool_calls.count > 0
if ipython && !didParseToolCalls {
continuation.yield(
Components.Schemas.ChatCompletionResponseStreamChunk(
event: Components.Schemas.ChatCompletionResponseEvent(
delta: .ToolCallDelta(Components.Schemas.ToolCallDelta(content: .case1(""), parse_status: .failure)),
event_type: .progress
)
// TODO: stopReason
)
)
}
for toolCall in message.tool_calls {
continuation.yield(
Components.Schemas.ChatCompletionResponseStreamChunk(
event: Components.Schemas.ChatCompletionResponseEvent(
delta: .ToolCallDelta(Components.Schemas.ToolCallDelta(
content: .ToolCall(toolCall),
parse_status: .success
)),
event_type: .progress
)
// TODO: stopReason
)
)
}
continuation.yield(
Components.Schemas.ChatCompletionResponseStreamChunk(
event: Components.Schemas.ChatCompletionResponseEvent(
delta: .case1(""),
event_type: .complete
)
// TODO: stopReason
)
)
}
catch (let error) {
print("Inference error: " + error.localizedDescription)
}
}
}
}
}

View file

@ -0,0 +1,235 @@
import Foundation
import LlamaStackClient
func encodeHeader(role: String) -> String {
return "<|start_header_id|>\(role)<|end_header_id|>\n\n"
}
func encodeDialogPrompt(messages: [Components.Schemas.ChatCompletionRequest.messagesPayloadPayload]) -> String {
var prompt = ""
prompt.append("<|begin_of_text|>")
for message in messages {
let msg = encodeMessage(message: message)
prompt += msg
}
prompt.append(encodeHeader(role: "assistant"))
return prompt
}
func getRole(message: Components.Schemas.ChatCompletionRequest.messagesPayloadPayload) -> String {
switch (message) {
case .UserMessage(let m):
return m.role.rawValue
case .SystemMessage(let m):
return m.role.rawValue
case .ToolResponseMessage(let m):
return m.role.rawValue
case .CompletionMessage(let m):
return m.role.rawValue
}
}
func encodeMessage(message: Components.Schemas.ChatCompletionRequest.messagesPayloadPayload) -> String {
var prompt = encodeHeader(role: getRole(message: message))
switch (message) {
case .CompletionMessage(let m):
if (m.tool_calls.count > 0) {
prompt += "<|python_tag|>"
}
default:
break
}
func _processContent(_ content: Any) -> String {
func _process(_ c: Any) {
if let str = c as? String {
prompt += str
}
}
if let str = content as? String {
_process(str)
} else if let list = content as? [Any] {
for c in list {
_process(c)
}
}
return ""
}
switch (message) {
case .UserMessage(let m):
prompt += _processContent(m.content)
case .SystemMessage(let m):
prompt += _processContent(m.content)
case .ToolResponseMessage(let m):
prompt += _processContent(m.content)
case .CompletionMessage(let m):
prompt += _processContent(m.content)
}
var eom = false
switch (message) {
case .UserMessage(let m):
switch (m.content) {
case .case1(let c):
prompt += _processContent(c)
case .case2(let c):
prompt += _processContent(c)
}
case .CompletionMessage(let m):
// TODO: Support encoding past tool call history
// for t in m.tool_calls {
// _processContent(t.)
//}
eom = m.stop_reason == Components.Schemas.StopReason.end_of_message
case .SystemMessage(_):
break
case .ToolResponseMessage(_):
break
}
if (eom) {
prompt += "<|eom_id|>"
} else {
prompt += "<|eot_id|>"
}
return prompt
}
func prepareMessages(request: Components.Schemas.ChatCompletionRequest) throws -> [Components.Schemas.ChatCompletionRequest.messagesPayloadPayload] {
var existingMessages = request.messages
var existingSystemMessage: Components.Schemas.ChatCompletionRequest.messagesPayloadPayload?
// TODO: Existing system message
var messages: [Components.Schemas.ChatCompletionRequest.messagesPayloadPayload] = []
let defaultGen = SystemDefaultGenerator()
let defaultTemplate = defaultGen.gen()
var sysContent = ""
// TODO: Built-in tools
sysContent += try defaultTemplate.render()
messages.append(.SystemMessage(Components.Schemas.SystemMessage(
content: .case1(sysContent),
role: .system))
)
if request.tools?.isEmpty == false {
// TODO: Separate built-ins and custom tools (right now everything treated as custom)
let toolGen = FunctionTagCustomToolGenerator()
let toolTemplate = try toolGen.gen(customTools: request.tools!)
let tools = try toolTemplate.render()
messages.append(.UserMessage(Components.Schemas.UserMessage(
content: .case1(tools),
role: .user)
))
}
messages.append(contentsOf: existingMessages)
return messages
}
struct FunctionCall {
let name: String
let params: [String: Any]
}
public func maybeExtractCustomToolCalls(input: String) -> [Components.Schemas.ToolCall] {
guard input.hasPrefix("[") && input.hasSuffix("]") else {
return []
}
do {
let trimmed = input.trimmingCharacters(in: CharacterSet(charactersIn: "[]"))
let calls = trimmed.components(separatedBy: "),").map { $0.hasSuffix(")") ? $0 : $0 + ")" }
var result: [Components.Schemas.ToolCall] = []
for call in calls {
guard let nameEndIndex = call.firstIndex(of: "("),
let paramsStartIndex = call.firstIndex(of: "{"),
let paramsEndIndex = call.lastIndex(of: "}") else {
return []
}
let name = String(call[..<nameEndIndex]).trimmingCharacters(in: .whitespacesAndNewlines)
let paramsString = String(call[paramsStartIndex...paramsEndIndex])
guard let data = paramsString.data(using: .utf8),
let params = try? JSONSerialization.jsonObject(with: data, options: []) as? [String: Any] else {
return []
}
var props: [String : Components.Schemas.ToolCall.argumentsPayload.additionalPropertiesPayload] = [:]
for (param_name, param) in params {
switch (param) {
case let value as String:
props[param_name] = .case1(value)
case let value as Int:
props[param_name] = .case2(value)
case let value as Double:
props[param_name] = .case3(value)
case let value as Bool:
props[param_name] = .case4(value)
default:
return []
}
}
result.append(
Components.Schemas.ToolCall(
arguments: .init(additionalProperties: props),
call_id: UUID().uuidString,
tool_name: .case2(name) // custom_tool
)
)
}
return result.isEmpty ? [] : result
} catch {
return []
}
}
func decodeAssistantMessage(tokens: String, stopReason: Components.Schemas.StopReason) -> Components.Schemas.CompletionMessage {
var content = tokens
let roles = ["user", "system", "assistant"]
for role in roles {
let headerStr = encodeHeader(role: role)
if content.hasPrefix(headerStr) {
content = String(content.dropFirst(encodeHeader(role: role).count))
}
}
if content.hasPrefix("<|python_tag|>") {
content = String(content.dropFirst("<|python_tag|>".count))
}
if content.hasSuffix("<|eot_id|>") {
content = String(content.dropLast("<|eot_id|>".count))
} else {
content = String(content.dropLast("<|eom_id|>".count))
}
return Components.Schemas.CompletionMessage(
content: .case1(content),
role: .assistant,
stop_reason: stopReason,
tool_calls: maybeExtractCustomToolCalls(input: content)
)
}

View file

@ -0,0 +1,12 @@
import Foundation
import Stencil
public struct PromptTemplate {
let template: String
let data: [String: Any]
public func render() throws -> String {
let template = Template(templateString: self.template)
return try template.render(self.data)
}
}

View file

@ -0,0 +1,91 @@
import Foundation
import LlamaStackClient
func convertToNativeSwiftType(_ value: Any) -> Any {
switch value {
case let number as NSNumber:
if CFGetTypeID(number) == CFBooleanGetTypeID() {
return number.boolValue
}
if floor(number.doubleValue) == number.doubleValue {
return number.intValue
}
return number.doubleValue
case let string as String:
return string
case let array as [Any]:
return array.map(convertToNativeSwiftType)
case let dict as [String: Any]:
return dict.mapValues(convertToNativeSwiftType)
case is NSNull:
return NSNull()
default:
return value
}
}
public class SystemDefaultGenerator {
public init() {}
public func gen() -> PromptTemplate {
let templateStr = """
Cutting Knowledge Date: December 2023
Today Date: {{ today }}
"""
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "dd MMMM yyyy"
return PromptTemplate(
template: templateStr,
data: ["today": dateFormatter.string(from: Date())]
)
}
}
public class FunctionTagCustomToolGenerator {
public init() {}
public func gen(customTools: [Components.Schemas.ToolDefinition]) throws -> PromptTemplate {
// TODO: required params
// TODO: {{#unless @last}},{{/unless}}
let templateStr = """
You are an expert in composing functions. You are given a question and a set of possible functions.
Based on the question, you will need to make one or more function/tool calls to achieve the purpose.
If none of the function can be used, point it out. If the given question lacks the parameters required by the function,
also point it out. You should only return the function call in tools call sections.
If you decide to invoke any of the function(s), you MUST put it in the format of [func_name1(params_name1=params_value1, params_name2=params_value2...), func_name2(params)]
You SHOULD NOT include any other text in the response.
Here is a list of functions in JSON format that you can invoke.
[
{% for t in custom_tools %}
{
"name": "{{t.tool_name}}",
"description": "{{t.description}}",
"parameters": {
"type": "dict",
"properties": { {{t.parameters}} }
}
{{/let}}
{% endfor -%}
]
"""
let encoder = JSONEncoder()
return PromptTemplate(
template: templateStr,
data: ["custom_tools": try customTools.map {
let data = try encoder.encode($0)
let obj = try JSONSerialization.jsonObject(with: data)
return convertToNativeSwiftType(obj)
}]
)
}
}

View file

@ -0,0 +1,541 @@
// !$*UTF8*$!
{
archiveVersion = 1;
classes = {
};
objectVersion = 60;
objects = {
/* Begin PBXBuildFile section */
5CADC71A2CA471CC007662D2 /* LlamaStackClient in Frameworks */ = {isa = PBXBuildFile; productRef = 5CADC7192CA471CC007662D2 /* LlamaStackClient */; };
5CCBC60C2CA1F04A00E958D0 /* LocalInference.h in Headers */ = {isa = PBXBuildFile; fileRef = 5CCBC60B2CA1F04A00E958D0 /* LocalInference.h */; settings = {ATTRIBUTES = (Public, ); }; };
5CCBC6752CA1F45800E958D0 /* executorch_debug in Frameworks */ = {isa = PBXBuildFile; productRef = 5CCBC6742CA1F45800E958D0 /* executorch_debug */; };
5CCBC6862CA1F64A00E958D0 /* LLaMARunner.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = 5CCBC6802CA1F63F00E958D0 /* LLaMARunner.framework */; platformFilter = ios; };
5CCBC6872CA1F64A00E958D0 /* LLaMARunner.framework in Embed Frameworks */ = {isa = PBXBuildFile; fileRef = 5CCBC6802CA1F63F00E958D0 /* LLaMARunner.framework */; platformFilter = ios; settings = {ATTRIBUTES = (CodeSignOnCopy, RemoveHeadersOnCopy, ); }; };
5CCBC68D2CA1F7A100E958D0 /* PromptTemplate.swift in Sources */ = {isa = PBXBuildFile; fileRef = 5CCBC6892CA1F7A000E958D0 /* PromptTemplate.swift */; };
5CCBC68E2CA1F7A100E958D0 /* LocalInference.swift in Sources */ = {isa = PBXBuildFile; fileRef = 5CCBC68A2CA1F7A000E958D0 /* LocalInference.swift */; };
5CCBC68F2CA1F7A100E958D0 /* Parsing.swift in Sources */ = {isa = PBXBuildFile; fileRef = 5CCBC68B2CA1F7A000E958D0 /* Parsing.swift */; };
5CCBC6902CA1F7A100E958D0 /* SystemPrompts.swift in Sources */ = {isa = PBXBuildFile; fileRef = 5CCBC68C2CA1F7A100E958D0 /* SystemPrompts.swift */; };
5CCBC6932CA1F7D000E958D0 /* Stencil in Frameworks */ = {isa = PBXBuildFile; productRef = 5CCBC6922CA1F7D000E958D0 /* Stencil */; };
/* End PBXBuildFile section */
/* Begin PBXContainerItemProxy section */
5CCBC67D2CA1F63F00E958D0 /* PBXContainerItemProxy */ = {
isa = PBXContainerItemProxy;
containerPortal = 5CCBC6762CA1F63F00E958D0 /* LLaMA.xcodeproj */;
proxyType = 2;
remoteGlobalIDString = 036CAF9D2BB1444500D6C2D5;
remoteInfo = LLaMA;
};
5CCBC67F2CA1F63F00E958D0 /* PBXContainerItemProxy */ = {
isa = PBXContainerItemProxy;
containerPortal = 5CCBC6762CA1F63F00E958D0 /* LLaMA.xcodeproj */;
proxyType = 2;
remoteGlobalIDString = 03729ED52BB1F8DE00152F2E;
remoteInfo = LLaMARunner;
};
5CCBC69E2CA2036B00E958D0 /* PBXContainerItemProxy */ = {
isa = PBXContainerItemProxy;
containerPortal = 5CCBC6762CA1F63F00E958D0 /* LLaMA.xcodeproj */;
proxyType = 2;
remoteGlobalIDString = 5CCBC6982CA2036A00E958D0;
remoteInfo = LLaMAPerfBenchmark;
};
5CCBC6A02CA2036B00E958D0 /* PBXContainerItemProxy */ = {
isa = PBXContainerItemProxy;
containerPortal = 5CCBC6762CA1F63F00E958D0 /* LLaMA.xcodeproj */;
proxyType = 2;
remoteGlobalIDString = 5CCBC6992CA2036A00E958D0;
remoteInfo = LLaMAPerfBenchmarkTests;
};
/* End PBXContainerItemProxy section */
/* Begin PBXCopyFilesBuildPhase section */
5CCBC6882CA1F64A00E958D0 /* Embed Frameworks */ = {
isa = PBXCopyFilesBuildPhase;
buildActionMask = 2147483647;
dstPath = "";
dstSubfolderSpec = 10;
files = (
5CCBC6872CA1F64A00E958D0 /* LLaMARunner.framework in Embed Frameworks */,
);
name = "Embed Frameworks";
runOnlyForDeploymentPostprocessing = 0;
};
/* End PBXCopyFilesBuildPhase section */
/* Begin PBXFileReference section */
5CCBC6082CA1F04A00E958D0 /* LocalInferenceImpl.framework */ = {isa = PBXFileReference; explicitFileType = wrapper.framework; includeInIndex = 0; path = LocalInferenceImpl.framework; sourceTree = BUILT_PRODUCTS_DIR; };
5CCBC60B2CA1F04A00E958D0 /* LocalInference.h */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.h; path = LocalInference.h; sourceTree = "<group>"; };
5CCBC6762CA1F63F00E958D0 /* LLaMA.xcodeproj */ = {isa = PBXFileReference; lastKnownFileType = "wrapper.pb-project"; name = LLaMA.xcodeproj; path = "executorch/examples/demo-apps/apple_ios/LLaMA/LLaMA.xcodeproj"; sourceTree = "<group>"; };
5CCBC6892CA1F7A000E958D0 /* PromptTemplate.swift */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.swift; path = PromptTemplate.swift; sourceTree = "<group>"; };
5CCBC68A2CA1F7A000E958D0 /* LocalInference.swift */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.swift; path = LocalInference.swift; sourceTree = "<group>"; };
5CCBC68B2CA1F7A000E958D0 /* Parsing.swift */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.swift; path = Parsing.swift; sourceTree = "<group>"; };
5CCBC68C2CA1F7A100E958D0 /* SystemPrompts.swift */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.swift; path = SystemPrompts.swift; sourceTree = "<group>"; };
/* End PBXFileReference section */
/* Begin PBXFrameworksBuildPhase section */
5CCBC6052CA1F04A00E958D0 /* Frameworks */ = {
isa = PBXFrameworksBuildPhase;
buildActionMask = 2147483647;
files = (
5CADC71A2CA471CC007662D2 /* LlamaStackClient in Frameworks */,
5CCBC6932CA1F7D000E958D0 /* Stencil in Frameworks */,
5CCBC6862CA1F64A00E958D0 /* LLaMARunner.framework in Frameworks */,
5CCBC6752CA1F45800E958D0 /* executorch_debug in Frameworks */,
);
runOnlyForDeploymentPostprocessing = 0;
};
/* End PBXFrameworksBuildPhase section */
/* Begin PBXGroup section */
5CCBC5FE2CA1F04A00E958D0 = {
isa = PBXGroup;
children = (
5CCBC6762CA1F63F00E958D0 /* LLaMA.xcodeproj */,
5CCBC60A2CA1F04A00E958D0 /* LocalInferenceImpl */,
5CCBC6092CA1F04A00E958D0 /* Products */,
5CCBC6852CA1F64A00E958D0 /* Frameworks */,
);
sourceTree = "<group>";
};
5CCBC6092CA1F04A00E958D0 /* Products */ = {
isa = PBXGroup;
children = (
5CCBC6082CA1F04A00E958D0 /* LocalInferenceImpl.framework */,
);
name = Products;
sourceTree = "<group>";
};
5CCBC60A2CA1F04A00E958D0 /* LocalInferenceImpl */ = {
isa = PBXGroup;
children = (
5CCBC68A2CA1F7A000E958D0 /* LocalInference.swift */,
5CCBC68B2CA1F7A000E958D0 /* Parsing.swift */,
5CCBC6892CA1F7A000E958D0 /* PromptTemplate.swift */,
5CCBC68C2CA1F7A100E958D0 /* SystemPrompts.swift */,
5CCBC60B2CA1F04A00E958D0 /* LocalInference.h */,
);
path = LocalInferenceImpl;
sourceTree = "<group>";
};
5CCBC6772CA1F63F00E958D0 /* Products */ = {
isa = PBXGroup;
children = (
5CCBC67E2CA1F63F00E958D0 /* LLaMA.app */,
5CCBC6802CA1F63F00E958D0 /* LLaMARunner.framework */,
5CCBC69F2CA2036B00E958D0 /* LLaMAPerfBenchmark.app */,
5CCBC6A12CA2036B00E958D0 /* LLaMAPerfBenchmarkTests.xctest */,
);
name = Products;
sourceTree = "<group>";
};
5CCBC6852CA1F64A00E958D0 /* Frameworks */ = {
isa = PBXGroup;
children = (
);
name = Frameworks;
sourceTree = "<group>";
};
/* End PBXGroup section */
/* Begin PBXHeadersBuildPhase section */
5CCBC6032CA1F04A00E958D0 /* Headers */ = {
isa = PBXHeadersBuildPhase;
buildActionMask = 2147483647;
files = (
5CCBC60C2CA1F04A00E958D0 /* LocalInference.h in Headers */,
);
runOnlyForDeploymentPostprocessing = 0;
};
/* End PBXHeadersBuildPhase section */
/* Begin PBXNativeTarget section */
5CCBC6072CA1F04A00E958D0 /* LocalInferenceImpl */ = {
isa = PBXNativeTarget;
buildConfigurationList = 5CCBC60F2CA1F04A00E958D0 /* Build configuration list for PBXNativeTarget "LocalInferenceImpl" */;
buildPhases = (
5CCBC6032CA1F04A00E958D0 /* Headers */,
5CCBC6042CA1F04A00E958D0 /* Sources */,
5CCBC6052CA1F04A00E958D0 /* Frameworks */,
5CCBC6062CA1F04A00E958D0 /* Resources */,
5CCBC6882CA1F64A00E958D0 /* Embed Frameworks */,
);
buildRules = (
);
dependencies = (
);
name = LocalInferenceImpl;
packageProductDependencies = (
5CCBC6742CA1F45800E958D0 /* executorch_debug */,
5CCBC6922CA1F7D000E958D0 /* Stencil */,
5CADC7192CA471CC007662D2 /* LlamaStackClient */,
);
productName = LocalInferenceProvider;
productReference = 5CCBC6082CA1F04A00E958D0 /* LocalInferenceImpl.framework */;
productType = "com.apple.product-type.framework";
};
/* End PBXNativeTarget section */
/* Begin PBXProject section */
5CCBC5FF2CA1F04A00E958D0 /* Project object */ = {
isa = PBXProject;
attributes = {
BuildIndependentTargetsInParallel = 1;
LastUpgradeCheck = 1540;
TargetAttributes = {
5CCBC6072CA1F04A00E958D0 = {
CreatedOnToolsVersion = 15.4;
LastSwiftMigration = 1540;
};
};
};
buildConfigurationList = 5CCBC6022CA1F04A00E958D0 /* Build configuration list for PBXProject "LocalInferenceImpl" */;
compatibilityVersion = "Xcode 14.0";
developmentRegion = en;
hasScannedForEncodings = 0;
knownRegions = (
en,
Base,
);
mainGroup = 5CCBC5FE2CA1F04A00E958D0;
packageReferences = (
5CCBC6732CA1F45800E958D0 /* XCRemoteSwiftPackageReference "executorch" */,
5CCBC6912CA1F7D000E958D0 /* XCRemoteSwiftPackageReference "Stencil" */,
5CADC7182CA471CC007662D2 /* XCLocalSwiftPackageReference "internal-llama-stack-client-swift" */,
);
productRefGroup = 5CCBC6092CA1F04A00E958D0 /* Products */;
projectDirPath = "";
projectReferences = (
{
ProductGroup = 5CCBC6772CA1F63F00E958D0 /* Products */;
ProjectRef = 5CCBC6762CA1F63F00E958D0 /* LLaMA.xcodeproj */;
},
);
projectRoot = "";
targets = (
5CCBC6072CA1F04A00E958D0 /* LocalInferenceImpl */,
);
};
/* End PBXProject section */
/* Begin PBXReferenceProxy section */
5CCBC67E2CA1F63F00E958D0 /* LLaMA.app */ = {
isa = PBXReferenceProxy;
fileType = wrapper.application;
path = LLaMA.app;
remoteRef = 5CCBC67D2CA1F63F00E958D0 /* PBXContainerItemProxy */;
sourceTree = BUILT_PRODUCTS_DIR;
};
5CCBC6802CA1F63F00E958D0 /* LLaMARunner.framework */ = {
isa = PBXReferenceProxy;
fileType = wrapper.framework;
path = LLaMARunner.framework;
remoteRef = 5CCBC67F2CA1F63F00E958D0 /* PBXContainerItemProxy */;
sourceTree = BUILT_PRODUCTS_DIR;
};
5CCBC69F2CA2036B00E958D0 /* LLaMAPerfBenchmark.app */ = {
isa = PBXReferenceProxy;
fileType = wrapper.application;
path = LLaMAPerfBenchmark.app;
remoteRef = 5CCBC69E2CA2036B00E958D0 /* PBXContainerItemProxy */;
sourceTree = BUILT_PRODUCTS_DIR;
};
5CCBC6A12CA2036B00E958D0 /* LLaMAPerfBenchmarkTests.xctest */ = {
isa = PBXReferenceProxy;
fileType = wrapper.cfbundle;
path = LLaMAPerfBenchmarkTests.xctest;
remoteRef = 5CCBC6A02CA2036B00E958D0 /* PBXContainerItemProxy */;
sourceTree = BUILT_PRODUCTS_DIR;
};
/* End PBXReferenceProxy section */
/* Begin PBXResourcesBuildPhase section */
5CCBC6062CA1F04A00E958D0 /* Resources */ = {
isa = PBXResourcesBuildPhase;
buildActionMask = 2147483647;
files = (
);
runOnlyForDeploymentPostprocessing = 0;
};
/* End PBXResourcesBuildPhase section */
/* Begin PBXSourcesBuildPhase section */
5CCBC6042CA1F04A00E958D0 /* Sources */ = {
isa = PBXSourcesBuildPhase;
buildActionMask = 2147483647;
files = (
5CCBC6902CA1F7A100E958D0 /* SystemPrompts.swift in Sources */,
5CCBC68D2CA1F7A100E958D0 /* PromptTemplate.swift in Sources */,
5CCBC68F2CA1F7A100E958D0 /* Parsing.swift in Sources */,
5CCBC68E2CA1F7A100E958D0 /* LocalInference.swift in Sources */,
);
runOnlyForDeploymentPostprocessing = 0;
};
/* End PBXSourcesBuildPhase section */
/* Begin XCBuildConfiguration section */
5CCBC60D2CA1F04A00E958D0 /* Debug */ = {
isa = XCBuildConfiguration;
buildSettings = {
ALWAYS_SEARCH_USER_PATHS = NO;
ASSETCATALOG_COMPILER_GENERATE_SWIFT_ASSET_SYMBOL_EXTENSIONS = YES;
CLANG_ANALYZER_NONNULL = YES;
CLANG_ANALYZER_NUMBER_OBJECT_CONVERSION = YES_AGGRESSIVE;
CLANG_CXX_LANGUAGE_STANDARD = "gnu++20";
CLANG_ENABLE_MODULES = YES;
CLANG_ENABLE_OBJC_ARC = YES;
CLANG_ENABLE_OBJC_WEAK = YES;
CLANG_WARN_BLOCK_CAPTURE_AUTORELEASING = YES;
CLANG_WARN_BOOL_CONVERSION = YES;
CLANG_WARN_COMMA = YES;
CLANG_WARN_CONSTANT_CONVERSION = YES;
CLANG_WARN_DEPRECATED_OBJC_IMPLEMENTATIONS = YES;
CLANG_WARN_DIRECT_OBJC_ISA_USAGE = YES_ERROR;
CLANG_WARN_DOCUMENTATION_COMMENTS = YES;
CLANG_WARN_EMPTY_BODY = YES;
CLANG_WARN_ENUM_CONVERSION = YES;
CLANG_WARN_INFINITE_RECURSION = YES;
CLANG_WARN_INT_CONVERSION = YES;
CLANG_WARN_NON_LITERAL_NULL_CONVERSION = YES;
CLANG_WARN_OBJC_IMPLICIT_RETAIN_SELF = YES;
CLANG_WARN_OBJC_LITERAL_CONVERSION = YES;
CLANG_WARN_OBJC_ROOT_CLASS = YES_ERROR;
CLANG_WARN_QUOTED_INCLUDE_IN_FRAMEWORK_HEADER = YES;
CLANG_WARN_RANGE_LOOP_ANALYSIS = YES;
CLANG_WARN_STRICT_PROTOTYPES = YES;
CLANG_WARN_SUSPICIOUS_MOVE = YES;
CLANG_WARN_UNGUARDED_AVAILABILITY = YES_AGGRESSIVE;
CLANG_WARN_UNREACHABLE_CODE = YES;
CLANG_WARN__DUPLICATE_METHOD_MATCH = YES;
COPY_PHASE_STRIP = NO;
CURRENT_PROJECT_VERSION = 1;
DEBUG_INFORMATION_FORMAT = dwarf;
ENABLE_STRICT_OBJC_MSGSEND = YES;
ENABLE_TESTABILITY = YES;
ENABLE_USER_SCRIPT_SANDBOXING = YES;
GCC_C_LANGUAGE_STANDARD = gnu17;
GCC_DYNAMIC_NO_PIC = NO;
GCC_NO_COMMON_BLOCKS = YES;
GCC_OPTIMIZATION_LEVEL = 0;
GCC_PREPROCESSOR_DEFINITIONS = (
"DEBUG=1",
"$(inherited)",
);
GCC_WARN_64_TO_32_BIT_CONVERSION = YES;
GCC_WARN_ABOUT_RETURN_TYPE = YES_ERROR;
GCC_WARN_UNDECLARED_SELECTOR = YES;
GCC_WARN_UNINITIALIZED_AUTOS = YES_AGGRESSIVE;
GCC_WARN_UNUSED_FUNCTION = YES;
GCC_WARN_UNUSED_VARIABLE = YES;
IPHONEOS_DEPLOYMENT_TARGET = 17.5;
LOCALIZATION_PREFERS_STRING_CATALOGS = YES;
MTL_ENABLE_DEBUG_INFO = INCLUDE_SOURCE;
MTL_FAST_MATH = YES;
ONLY_ACTIVE_ARCH = YES;
SDKROOT = iphoneos;
SWIFT_ACTIVE_COMPILATION_CONDITIONS = "DEBUG $(inherited)";
SWIFT_OPTIMIZATION_LEVEL = "-Onone";
VERSIONING_SYSTEM = "apple-generic";
VERSION_INFO_PREFIX = "";
};
name = Debug;
};
5CCBC60E2CA1F04A00E958D0 /* Release */ = {
isa = XCBuildConfiguration;
buildSettings = {
ALWAYS_SEARCH_USER_PATHS = NO;
ASSETCATALOG_COMPILER_GENERATE_SWIFT_ASSET_SYMBOL_EXTENSIONS = YES;
CLANG_ANALYZER_NONNULL = YES;
CLANG_ANALYZER_NUMBER_OBJECT_CONVERSION = YES_AGGRESSIVE;
CLANG_CXX_LANGUAGE_STANDARD = "gnu++20";
CLANG_ENABLE_MODULES = YES;
CLANG_ENABLE_OBJC_ARC = YES;
CLANG_ENABLE_OBJC_WEAK = YES;
CLANG_WARN_BLOCK_CAPTURE_AUTORELEASING = YES;
CLANG_WARN_BOOL_CONVERSION = YES;
CLANG_WARN_COMMA = YES;
CLANG_WARN_CONSTANT_CONVERSION = YES;
CLANG_WARN_DEPRECATED_OBJC_IMPLEMENTATIONS = YES;
CLANG_WARN_DIRECT_OBJC_ISA_USAGE = YES_ERROR;
CLANG_WARN_DOCUMENTATION_COMMENTS = YES;
CLANG_WARN_EMPTY_BODY = YES;
CLANG_WARN_ENUM_CONVERSION = YES;
CLANG_WARN_INFINITE_RECURSION = YES;
CLANG_WARN_INT_CONVERSION = YES;
CLANG_WARN_NON_LITERAL_NULL_CONVERSION = YES;
CLANG_WARN_OBJC_IMPLICIT_RETAIN_SELF = YES;
CLANG_WARN_OBJC_LITERAL_CONVERSION = YES;
CLANG_WARN_OBJC_ROOT_CLASS = YES_ERROR;
CLANG_WARN_QUOTED_INCLUDE_IN_FRAMEWORK_HEADER = YES;
CLANG_WARN_RANGE_LOOP_ANALYSIS = YES;
CLANG_WARN_STRICT_PROTOTYPES = YES;
CLANG_WARN_SUSPICIOUS_MOVE = YES;
CLANG_WARN_UNGUARDED_AVAILABILITY = YES_AGGRESSIVE;
CLANG_WARN_UNREACHABLE_CODE = YES;
CLANG_WARN__DUPLICATE_METHOD_MATCH = YES;
COPY_PHASE_STRIP = NO;
CURRENT_PROJECT_VERSION = 1;
DEBUG_INFORMATION_FORMAT = "dwarf-with-dsym";
ENABLE_NS_ASSERTIONS = NO;
ENABLE_STRICT_OBJC_MSGSEND = YES;
ENABLE_USER_SCRIPT_SANDBOXING = YES;
GCC_C_LANGUAGE_STANDARD = gnu17;
GCC_NO_COMMON_BLOCKS = YES;
GCC_WARN_64_TO_32_BIT_CONVERSION = YES;
GCC_WARN_ABOUT_RETURN_TYPE = YES_ERROR;
GCC_WARN_UNDECLARED_SELECTOR = YES;
GCC_WARN_UNINITIALIZED_AUTOS = YES_AGGRESSIVE;
GCC_WARN_UNUSED_FUNCTION = YES;
GCC_WARN_UNUSED_VARIABLE = YES;
IPHONEOS_DEPLOYMENT_TARGET = 17.5;
LOCALIZATION_PREFERS_STRING_CATALOGS = YES;
MTL_ENABLE_DEBUG_INFO = NO;
MTL_FAST_MATH = YES;
SDKROOT = iphoneos;
SWIFT_COMPILATION_MODE = wholemodule;
VALIDATE_PRODUCT = YES;
VERSIONING_SYSTEM = "apple-generic";
VERSION_INFO_PREFIX = "";
};
name = Release;
};
5CCBC6102CA1F04A00E958D0 /* Debug */ = {
isa = XCBuildConfiguration;
buildSettings = {
BUILD_LIBRARY_FOR_DISTRIBUTION = YES;
CLANG_ENABLE_MODULES = YES;
CODE_SIGN_STYLE = Automatic;
CURRENT_PROJECT_VERSION = 1;
DEFINES_MODULE = YES;
DYLIB_COMPATIBILITY_VERSION = 1;
DYLIB_CURRENT_VERSION = 1;
DYLIB_INSTALL_NAME_BASE = "@rpath";
ENABLE_MODULE_VERIFIER = YES;
GENERATE_INFOPLIST_FILE = YES;
HEADER_SEARCH_PATHS = "";
INFOPLIST_KEY_NSHumanReadableCopyright = "";
INSTALL_PATH = "$(LOCAL_LIBRARY_DIR)/Frameworks";
LD_RUNPATH_SEARCH_PATHS = (
"$(inherited)",
"@executable_path/Frameworks",
"@loader_path/Frameworks",
);
MARKETING_VERSION = 1.0;
MODULE_VERIFIER_SUPPORTED_LANGUAGES = "objective-c objective-c++";
MODULE_VERIFIER_SUPPORTED_LANGUAGE_STANDARDS = "gnu17 gnu++20";
OTHER_LDFLAGS = "";
PRODUCT_BUNDLE_IDENTIFIER = meta.llamatsack.LocalInferenceProvider;
PRODUCT_NAME = "$(TARGET_NAME:c99extidentifier)";
SKIP_INSTALL = YES;
SWIFT_EMIT_LOC_STRINGS = YES;
SWIFT_INSTALL_OBJC_HEADER = NO;
SWIFT_OPTIMIZATION_LEVEL = "-Onone";
SWIFT_VERSION = 5.0;
TARGETED_DEVICE_FAMILY = "1,2";
};
name = Debug;
};
5CCBC6112CA1F04A00E958D0 /* Release */ = {
isa = XCBuildConfiguration;
buildSettings = {
BUILD_LIBRARY_FOR_DISTRIBUTION = YES;
CLANG_ENABLE_MODULES = YES;
CODE_SIGN_STYLE = Automatic;
CURRENT_PROJECT_VERSION = 1;
DEFINES_MODULE = YES;
DYLIB_COMPATIBILITY_VERSION = 1;
DYLIB_CURRENT_VERSION = 1;
DYLIB_INSTALL_NAME_BASE = "@rpath";
ENABLE_MODULE_VERIFIER = YES;
GENERATE_INFOPLIST_FILE = YES;
HEADER_SEARCH_PATHS = "";
INFOPLIST_KEY_NSHumanReadableCopyright = "";
INSTALL_PATH = "$(LOCAL_LIBRARY_DIR)/Frameworks";
LD_RUNPATH_SEARCH_PATHS = (
"$(inherited)",
"@executable_path/Frameworks",
"@loader_path/Frameworks",
);
MARKETING_VERSION = 1.0;
MODULE_VERIFIER_SUPPORTED_LANGUAGES = "objective-c objective-c++";
MODULE_VERIFIER_SUPPORTED_LANGUAGE_STANDARDS = "gnu17 gnu++20";
OTHER_LDFLAGS = "";
PRODUCT_BUNDLE_IDENTIFIER = meta.llamatsack.LocalInferenceProvider;
PRODUCT_NAME = "$(TARGET_NAME:c99extidentifier)";
SKIP_INSTALL = YES;
SWIFT_EMIT_LOC_STRINGS = YES;
SWIFT_INSTALL_OBJC_HEADER = NO;
SWIFT_VERSION = 5.0;
TARGETED_DEVICE_FAMILY = "1,2";
};
name = Release;
};
/* End XCBuildConfiguration section */
/* Begin XCConfigurationList section */
5CCBC6022CA1F04A00E958D0 /* Build configuration list for PBXProject "LocalInferenceImpl" */ = {
isa = XCConfigurationList;
buildConfigurations = (
5CCBC60D2CA1F04A00E958D0 /* Debug */,
5CCBC60E2CA1F04A00E958D0 /* Release */,
);
defaultConfigurationIsVisible = 0;
defaultConfigurationName = Release;
};
5CCBC60F2CA1F04A00E958D0 /* Build configuration list for PBXNativeTarget "LocalInferenceImpl" */ = {
isa = XCConfigurationList;
buildConfigurations = (
5CCBC6102CA1F04A00E958D0 /* Debug */,
5CCBC6112CA1F04A00E958D0 /* Release */,
);
defaultConfigurationIsVisible = 0;
defaultConfigurationName = Release;
};
/* End XCConfigurationList section */
/* Begin XCLocalSwiftPackageReference section */
5CADC7182CA471CC007662D2 /* XCLocalSwiftPackageReference "internal-llama-stack-client-swift" */ = {
isa = XCLocalSwiftPackageReference;
relativePath = "internal-llama-stack-client-swift";
};
/* End XCLocalSwiftPackageReference section */
/* Begin XCRemoteSwiftPackageReference section */
5CCBC6732CA1F45800E958D0 /* XCRemoteSwiftPackageReference "executorch" */ = {
isa = XCRemoteSwiftPackageReference;
repositoryURL = "https://github.com/pytorch/executorch";
requirement = {
branch = latest;
kind = branch;
};
};
5CCBC6912CA1F7D000E958D0 /* XCRemoteSwiftPackageReference "Stencil" */ = {
isa = XCRemoteSwiftPackageReference;
repositoryURL = "https://github.com/stencilproject/Stencil";
requirement = {
kind = upToNextMajorVersion;
minimumVersion = 0.15.1;
};
};
/* End XCRemoteSwiftPackageReference section */
/* Begin XCSwiftPackageProductDependency section */
5CADC7192CA471CC007662D2 /* LlamaStackClient */ = {
isa = XCSwiftPackageProductDependency;
productName = LlamaStackClient;
};
5CCBC6742CA1F45800E958D0 /* executorch_debug */ = {
isa = XCSwiftPackageProductDependency;
package = 5CCBC6732CA1F45800E958D0 /* XCRemoteSwiftPackageReference "executorch" */;
productName = executorch_debug;
};
5CCBC6922CA1F7D000E958D0 /* Stencil */ = {
isa = XCSwiftPackageProductDependency;
package = 5CCBC6912CA1F7D000E958D0 /* XCRemoteSwiftPackageReference "Stencil" */;
productName = Stencil;
};
/* End XCSwiftPackageProductDependency section */
};
rootObject = 5CCBC5FF2CA1F04A00E958D0 /* Project object */;
}

View file

@ -0,0 +1,7 @@
<?xml version="1.0" encoding="UTF-8"?>
<Workspace
version = "1.0">
<FileRef
location = "self:">
</FileRef>
</Workspace>

View file

@ -0,0 +1,8 @@
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>IDEDidComputeMac32BitWarning</key>
<true/>
</dict>
</plist>

View file

@ -0,0 +1,16 @@
//
// LocalInference.h
// LocalInference
//
// Created by Dalton Flanagan on 9/23/24.
//
#import <Foundation/Foundation.h>
//! Project version number for LocalInference.
FOUNDATION_EXPORT double LocalInferenceVersionNumber;
//! Project version string for LocalInference.
FOUNDATION_EXPORT const unsigned char LocalInferenceVersionString[];
// In this header, you should import all the public headers of your framework using statements like #import <LocalInference/PublicHeader.h>

View file

@ -0,0 +1,167 @@
import Foundation
import LLaMARunner
import LlamaStackClient
class RunnerHolder: ObservableObject {
var runner: Runner?
}
public class LocalInference: Inference {
private var runnerHolder = RunnerHolder()
private let runnerQueue: DispatchQueue
public init (queue: DispatchQueue) {
runnerQueue = queue
}
public func loadModel(modelPath: String, tokenizerPath: String, completion: @escaping (Result<Void, Error>) -> Void) {
runnerHolder.runner = runnerHolder.runner ?? Runner(
modelPath: modelPath,
tokenizerPath: tokenizerPath
)
runnerQueue.async {
let runner = self.runnerHolder.runner
do {
try runner!.load()
completion(.success(()))
} catch let loadError {
print("error: " + loadError.localizedDescription)
completion(.failure(loadError))
}
}
}
public func chatCompletion(request: Components.Schemas.ChatCompletionRequest) -> AsyncStream<Components.Schemas.ChatCompletionResponseStreamChunk> {
return AsyncStream { continuation in
runnerQueue.async {
do {
var tokens: [String] = []
let prompt = try encodeDialogPrompt(messages: prepareMessages(request: request))
var stopReason: Components.Schemas.StopReason? = nil
var buffer = ""
var ipython = false
var echoDropped = false
try self.runnerHolder.runner?.generate(prompt, sequenceLength: 4096) { token in
buffer += token
// HACK: Workaround until LlamaRunner exposes echo param
if (!echoDropped) {
if (buffer.hasPrefix(prompt)) {
buffer = String(buffer.dropFirst(prompt.count))
echoDropped = true
}
return
}
tokens.append(token)
if !ipython && (buffer.starts(with: "<|python_tag|>") || buffer.starts(with: "[") ) {
ipython = true
continuation.yield(
Components.Schemas.ChatCompletionResponseStreamChunk(
event: Components.Schemas.ChatCompletionResponseEvent(
delta: .ToolCallDelta(Components.Schemas.ToolCallDelta(
content: .case1(""),
parse_status: Components.Schemas.ToolCallParseStatus.started
)
),
event_type: .progress
)
)
)
if (buffer.starts(with: "<|python_tag|>")) {
buffer = String(buffer.dropFirst("<|python_tag|>".count))
}
}
// TODO: Non-streaming lobprobs
var text = ""
if token == "<|eot_id|>" {
stopReason = Components.Schemas.StopReason.end_of_turn
} else if token == "<|eom_id|>" {
stopReason = Components.Schemas.StopReason.end_of_message
} else {
text = token
}
var delta: Components.Schemas.ChatCompletionResponseEvent.deltaPayload
if ipython {
delta = .ToolCallDelta(Components.Schemas.ToolCallDelta(
content: .case1(text),
parse_status: .in_progress
))
} else {
delta = .case1(text)
}
if stopReason == nil {
continuation.yield(
Components.Schemas.ChatCompletionResponseStreamChunk(
event: Components.Schemas.ChatCompletionResponseEvent(
delta: delta,
event_type: .progress
)
)
)
}
}
if stopReason == nil {
stopReason = Components.Schemas.StopReason.out_of_tokens
}
let message = decodeAssistantMessage(tokens: tokens.joined(), stopReason: stopReason!)
// TODO: non-streaming support
let didParseToolCalls = message.tool_calls.count > 0
if ipython && !didParseToolCalls {
continuation.yield(
Components.Schemas.ChatCompletionResponseStreamChunk(
event: Components.Schemas.ChatCompletionResponseEvent(
delta: .ToolCallDelta(Components.Schemas.ToolCallDelta(content: .case1(""), parse_status: .failure)),
event_type: .progress
)
// TODO: stopReason
)
)
}
for toolCall in message.tool_calls {
continuation.yield(
Components.Schemas.ChatCompletionResponseStreamChunk(
event: Components.Schemas.ChatCompletionResponseEvent(
delta: .ToolCallDelta(Components.Schemas.ToolCallDelta(
content: .ToolCall(toolCall),
parse_status: .success
)),
event_type: .progress
)
// TODO: stopReason
)
)
}
continuation.yield(
Components.Schemas.ChatCompletionResponseStreamChunk(
event: Components.Schemas.ChatCompletionResponseEvent(
delta: .case1(""),
event_type: .complete
)
// TODO: stopReason
)
)
}
catch (let error) {
print("Inference error: " + error.localizedDescription)
}
}
}
}
}

View file

@ -0,0 +1,235 @@
import Foundation
import LlamaStackClient
func encodeHeader(role: String) -> String {
return "<|start_header_id|>\(role)<|end_header_id|>\n\n"
}
func encodeDialogPrompt(messages: [Components.Schemas.ChatCompletionRequest.messagesPayloadPayload]) -> String {
var prompt = ""
prompt.append("<|begin_of_text|>")
for message in messages {
let msg = encodeMessage(message: message)
prompt += msg
}
prompt.append(encodeHeader(role: "assistant"))
return prompt
}
func getRole(message: Components.Schemas.ChatCompletionRequest.messagesPayloadPayload) -> String {
switch (message) {
case .UserMessage(let m):
return m.role.rawValue
case .SystemMessage(let m):
return m.role.rawValue
case .ToolResponseMessage(let m):
return m.role.rawValue
case .CompletionMessage(let m):
return m.role.rawValue
}
}
func encodeMessage(message: Components.Schemas.ChatCompletionRequest.messagesPayloadPayload) -> String {
var prompt = encodeHeader(role: getRole(message: message))
switch (message) {
case .CompletionMessage(let m):
if (m.tool_calls.count > 0) {
prompt += "<|python_tag|>"
}
default:
break
}
func _processContent(_ content: Any) -> String {
func _process(_ c: Any) {
if let str = c as? String {
prompt += str
}
}
if let str = content as? String {
_process(str)
} else if let list = content as? [Any] {
for c in list {
_process(c)
}
}
return ""
}
switch (message) {
case .UserMessage(let m):
prompt += _processContent(m.content)
case .SystemMessage(let m):
prompt += _processContent(m.content)
case .ToolResponseMessage(let m):
prompt += _processContent(m.content)
case .CompletionMessage(let m):
prompt += _processContent(m.content)
}
var eom = false
switch (message) {
case .UserMessage(let m):
switch (m.content) {
case .case1(let c):
prompt += _processContent(c)
case .case2(let c):
prompt += _processContent(c)
}
case .CompletionMessage(let m):
// TODO: Support encoding past tool call history
// for t in m.tool_calls {
// _processContent(t.)
//}
eom = m.stop_reason == Components.Schemas.StopReason.end_of_message
case .SystemMessage(_):
break
case .ToolResponseMessage(_):
break
}
if (eom) {
prompt += "<|eom_id|>"
} else {
prompt += "<|eot_id|>"
}
return prompt
}
func prepareMessages(request: Components.Schemas.ChatCompletionRequest) throws -> [Components.Schemas.ChatCompletionRequest.messagesPayloadPayload] {
var existingMessages = request.messages
var existingSystemMessage: Components.Schemas.ChatCompletionRequest.messagesPayloadPayload?
// TODO: Existing system message
var messages: [Components.Schemas.ChatCompletionRequest.messagesPayloadPayload] = []
let defaultGen = SystemDefaultGenerator()
let defaultTemplate = defaultGen.gen()
var sysContent = ""
// TODO: Built-in tools
sysContent += try defaultTemplate.render()
messages.append(.SystemMessage(Components.Schemas.SystemMessage(
content: .case1(sysContent),
role: .system))
)
if request.tools?.isEmpty == false {
// TODO: Separate built-ins and custom tools (right now everything treated as custom)
let toolGen = FunctionTagCustomToolGenerator()
let toolTemplate = try toolGen.gen(customTools: request.tools!)
let tools = try toolTemplate.render()
messages.append(.UserMessage(Components.Schemas.UserMessage(
content: .case1(tools),
role: .user)
))
}
messages.append(contentsOf: existingMessages)
return messages
}
struct FunctionCall {
let name: String
let params: [String: Any]
}
public func maybeExtractCustomToolCalls(input: String) -> [Components.Schemas.ToolCall] {
guard input.hasPrefix("[") && input.hasSuffix("]") else {
return []
}
do {
let trimmed = input.trimmingCharacters(in: CharacterSet(charactersIn: "[]"))
let calls = trimmed.components(separatedBy: "),").map { $0.hasSuffix(")") ? $0 : $0 + ")" }
var result: [Components.Schemas.ToolCall] = []
for call in calls {
guard let nameEndIndex = call.firstIndex(of: "("),
let paramsStartIndex = call.firstIndex(of: "{"),
let paramsEndIndex = call.lastIndex(of: "}") else {
return []
}
let name = String(call[..<nameEndIndex]).trimmingCharacters(in: .whitespacesAndNewlines)
let paramsString = String(call[paramsStartIndex...paramsEndIndex])
guard let data = paramsString.data(using: .utf8),
let params = try? JSONSerialization.jsonObject(with: data, options: []) as? [String: Any] else {
return []
}
var props: [String : Components.Schemas.ToolCall.argumentsPayload.additionalPropertiesPayload] = [:]
for (param_name, param) in params {
switch (param) {
case let value as String:
props[param_name] = .case1(value)
case let value as Int:
props[param_name] = .case2(value)
case let value as Double:
props[param_name] = .case3(value)
case let value as Bool:
props[param_name] = .case4(value)
default:
return []
}
}
result.append(
Components.Schemas.ToolCall(
arguments: .init(additionalProperties: props),
call_id: UUID().uuidString,
tool_name: .case2(name) // custom_tool
)
)
}
return result.isEmpty ? [] : result
} catch {
return []
}
}
func decodeAssistantMessage(tokens: String, stopReason: Components.Schemas.StopReason) -> Components.Schemas.CompletionMessage {
var content = tokens
let roles = ["user", "system", "assistant"]
for role in roles {
let headerStr = encodeHeader(role: role)
if content.hasPrefix(headerStr) {
content = String(content.dropFirst(encodeHeader(role: role).count))
}
}
if content.hasPrefix("<|python_tag|>") {
content = String(content.dropFirst("<|python_tag|>".count))
}
if content.hasSuffix("<|eot_id|>") {
content = String(content.dropLast("<|eot_id|>".count))
} else {
content = String(content.dropLast("<|eom_id|>".count))
}
return Components.Schemas.CompletionMessage(
content: .case1(content),
role: .assistant,
stop_reason: stopReason,
tool_calls: maybeExtractCustomToolCalls(input: content)
)
}

View file

@ -0,0 +1,12 @@
import Foundation
import Stencil
public struct PromptTemplate {
let template: String
let data: [String: Any]
public func render() throws -> String {
let template = Template(templateString: self.template)
return try template.render(self.data)
}
}

View file

@ -0,0 +1,91 @@
import Foundation
import LlamaStackClient
func convertToNativeSwiftType(_ value: Any) -> Any {
switch value {
case let number as NSNumber:
if CFGetTypeID(number) == CFBooleanGetTypeID() {
return number.boolValue
}
if floor(number.doubleValue) == number.doubleValue {
return number.intValue
}
return number.doubleValue
case let string as String:
return string
case let array as [Any]:
return array.map(convertToNativeSwiftType)
case let dict as [String: Any]:
return dict.mapValues(convertToNativeSwiftType)
case is NSNull:
return NSNull()
default:
return value
}
}
public class SystemDefaultGenerator {
public init() {}
public func gen() -> PromptTemplate {
let templateStr = """
Cutting Knowledge Date: December 2023
Today Date: {{ today }}
"""
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "dd MMMM yyyy"
return PromptTemplate(
template: templateStr,
data: ["today": dateFormatter.string(from: Date())]
)
}
}
public class FunctionTagCustomToolGenerator {
public init() {}
public func gen(customTools: [Components.Schemas.ToolDefinition]) throws -> PromptTemplate {
// TODO: required params
// TODO: {{#unless @last}},{{/unless}}
let templateStr = """
You are an expert in composing functions. You are given a question and a set of possible functions.
Based on the question, you will need to make one or more function/tool calls to achieve the purpose.
If none of the function can be used, point it out. If the given question lacks the parameters required by the function,
also point it out. You should only return the function call in tools call sections.
If you decide to invoke any of the function(s), you MUST put it in the format of [func_name1(params_name1=params_value1, params_name2=params_value2...), func_name2(params)]
You SHOULD NOT include any other text in the response.
Here is a list of functions in JSON format that you can invoke.
[
{% for t in custom_tools %}
{
"name": "{{t.tool_name}}",
"description": "{{t.description}}",
"parameters": {
"type": "dict",
"properties": { {{t.parameters}} }
}
{{/let}}
{% endfor -%}
]
"""
let encoder = JSONEncoder()
return PromptTemplate(
template: templateStr,
data: ["custom_tools": try customTools.map {
let data = try encoder.encode($0)
let obj = try JSONSerialization.jsonObject(with: data)
return convertToNativeSwiftType(obj)
}]
)
}
}

View file

@ -0,0 +1,109 @@
# LocalInference
LocalInference provides a local inference implementation powered by [executorch](https://github.com/pytorch/executorch/).
Llama Stack currently supports on-device inference for iOS with Android coming soon. You can run on-device inference on Android today using [executorch](https://github.com/pytorch/executorch/tree/main/examples/demo-apps/android/LlamaDemo), PyTorchs on-device inference library.
## Installation
We're working on making LocalInference easier to set up. For now, you'll need to import it via `.xcframework`:
1. Clone the executorch submodule in this repo and its dependencies: `git submodule update --init --recursive`
1. Install [Cmake](https://cmake.org/) for the executorch build`
1. Drag `LocalInference.xcodeproj` into your project
1. Add `LocalInference` as a framework in your app target
1. Add a package dependency on https://github.com/pytorch/executorch (branch latest)
1. Add all the kernels / backends from executorch (but not exectuorch itself!) as frameworks in your app target:
- backend_coreml
- backend_mps
- backend_xnnpack
- kernels_custom
- kernels_optimized
- kernels_portable
- kernels_quantized
1. In "Build Settings" > "Other Linker Flags" > "Any iOS Simulator SDK", add:
```
-force_load
$(BUILT_PRODUCTS_DIR)/libkernels_optimized-simulator-release.a
-force_load
$(BUILT_PRODUCTS_DIR)/libkernels_custom-simulator-release.a
-force_load
$(BUILT_PRODUCTS_DIR)/libkernels_quantized-simulator-release.a
-force_load
$(BUILT_PRODUCTS_DIR)/libbackend_xnnpack-simulator-release.a
-force_load
$(BUILT_PRODUCTS_DIR)/libbackend_coreml-simulator-release.a
-force_load
$(BUILT_PRODUCTS_DIR)/libbackend_mps-simulator-release.a
```
1. In "Build Settings" > "Other Linker Flags" > "Any iOS SDK", add:
```
-force_load
$(BUILT_PRODUCTS_DIR)/libkernels_optimized-simulator-release.a
-force_load
$(BUILT_PRODUCTS_DIR)/libkernels_custom-simulator-release.a
-force_load
$(BUILT_PRODUCTS_DIR)/libkernels_quantized-simulator-release.a
-force_load
$(BUILT_PRODUCTS_DIR)/libbackend_xnnpack-simulator-release.a
-force_load
$(BUILT_PRODUCTS_DIR)/libbackend_coreml-simulator-release.a
-force_load
$(BUILT_PRODUCTS_DIR)/libbackend_mps-simulator-release.a
```
## Preparing a model
1. Prepare a `.pte` file [following the executorch docs](https://github.com/pytorch/executorch/blob/main/examples/models/llama2/README.md#step-2-prepare-model)
2. Bundle the `.pte` and `tokenizer.model` file into your app
## Using LocalInference
1. Instantiate LocalInference with a DispatchQueue. Optionally, pass it into your agents service:
```swift
init () {
runnerQueue = DispatchQueue(label: "org.meta.llamastack")
inferenceService = LocalInferenceService(queue: runnerQueue)
agentsService = LocalAgentsService(inference: inferenceService)
}
```
2. Before making any inference calls, load your model from your bundle:
```swift
let mainBundle = Bundle.main
inferenceService.loadModel(
modelPath: mainBundle.url(forResource: "llama32_1b_spinquant", withExtension: "pte"),
tokenizerPath: mainBundle.url(forResource: "tokenizer", withExtension: "model"),
completion: {_ in } // use to handle load failures
)
```
3. Make inference calls (or agents calls) as you normally would with LlamaStack:
```
for await chunk in try await agentsService.initAndCreateTurn(
messages: [
.UserMessage(Components.Schemas.UserMessage(
content: .case1("Call functions as needed to handle any actions in the following text:\n\n" + text),
role: .user))
]
) {
```
## Troubleshooting
If you receive errors like "missing package product" or "invalid checksum", try cleaning the build folder and resetting the Swift package cache:
(Opt+Click) Product > Clean Build Folder Immediately
```
rm -rf \
~/Library/org.swift.swiftpm \
~/Library/Caches/org.swift.swiftpm \
~/Library/Caches/com.apple.dt.Xcode \
~/Library/Developer/Xcode/DerivedData
```

View file

@ -398,7 +398,11 @@ class ChatAgent(ShieldRunnerMixin):
color = "yellow"
else:
color = None
cprint(f"{str(msg)}", color=color)
if len(str(msg)) > 1000:
msg_str = f"{str(msg)[:500]}...<more>...{str(msg)[-500:]}"
else:
msg_str = str(msg)
cprint(f"{msg_str}", color=color)
step_id = str(uuid.uuid4())
yield AgentTurnResponseStreamChunk(
@ -466,6 +470,13 @@ class ChatAgent(ShieldRunnerMixin):
stop_reason = event.stop_reason
stop_reason = stop_reason or StopReason.out_of_tokens
# If tool calls are parsed successfully,
# if content is not made null the tool call str will also be in the content
# and tokens will have tool call syntax included twice
if tool_calls:
content = ""
message = CompletionMessage(
content=content,
stop_reason=stop_reason,

View file

@ -10,13 +10,14 @@ from jinja2 import Template
from llama_models.llama3.api import * # noqa: F403
from termcolor import cprint # noqa: F401
from llama_stack.apis.agents import (
DefaultMemoryQueryGeneratorConfig,
LLMMemoryQueryGeneratorConfig,
MemoryQueryGenerator,
MemoryQueryGeneratorConfig,
)
from termcolor import cprint # noqa: F401
from llama_stack.apis.inference import * # noqa: F403

View file

@ -16,7 +16,7 @@ from pydantic import BaseModel, Field, field_validator
class MetaReferenceImplConfig(BaseModel):
model: str = Field(
default="Meta-Llama3.1-8B-Instruct",
default="Llama3.1-8B-Instruct",
description="Model descriptor from `llama model list`",
)
quantization: Optional[QuantizationConfig] = None
@ -30,7 +30,7 @@ class MetaReferenceImplConfig(BaseModel):
permitted_models = [
m.descriptor()
for m in all_registered_models()
if m.model_family == ModelFamily.llama3_1
if m.model_family in {ModelFamily.llama3_1, ModelFamily.llama3_2}
or m.core_model_id == CoreModelId.llama_guard_3_8b
]
if model not in permitted_models:
@ -42,14 +42,9 @@ class MetaReferenceImplConfig(BaseModel):
@property
def model_parallel_size(self) -> int:
# HUGE HACK ALERT: this will be fixed when we move inference configuration
# HACK ALERT: this will be fixed when we move inference configuration
# to ModelsRegistry and we can explicitly ask for `model_parallel_size`
# as configuration there
gpu_count = 1
resolved = resolve_model(self.model)
assert resolved is not None
descriptor = resolved.descriptor().lower()
if "-70b" in descriptor or "-405b" in descriptor:
gpu_count = 8
return gpu_count
return resolved.pth_file_count

View file

@ -24,21 +24,31 @@ from fairscale.nn.model_parallel.initialize import (
)
from llama_models.llama3.api.args import ModelArgs
from llama_models.llama3.api.chat_format import ChatFormat, ModelInput
from llama_models.llama3.api.datatypes import Message, ToolPromptFormat
from llama_models.llama3.api.datatypes import (
InterleavedTextMedia,
Message,
ToolPromptFormat,
)
from llama_models.llama3.api.tokenizer import Tokenizer
from llama_models.llama3.reference_impl.model import Transformer
from llama_models.llama3.reference_impl.multimodal.model import (
CrossAttentionTransformer,
)
from llama_models.sku_list import resolve_model
from termcolor import cprint
from llama_stack.apis.inference import QuantizationType
from llama_stack.distribution.utils.model_utils import model_local_dir
from termcolor import cprint
from .config import MetaReferenceImplConfig
def model_checkpoint_dir(model) -> str:
checkpoint_dir = Path(model_local_dir(model.descriptor()))
if not Path(checkpoint_dir / "consolidated.00.pth").exists():
paths = [Path(checkpoint_dir / f"consolidated.{ext}") for ext in ["pth", "00.pth"]]
if not any(p.exists() for p in paths):
checkpoint_dir = checkpoint_dir / "original"
assert checkpoint_dir.exists(), (
@ -134,7 +144,11 @@ class Llama:
# load on CPU in bf16 so that fp8 conversion does not find an
# unexpected (fp32, e.g.) datatype
torch.set_default_tensor_type(torch.BFloat16Tensor)
model = Transformer(model_args)
if model_args.vision_chunk_size > 0:
model = CrossAttentionTransformer(model_args)
model.setup_cache(model_args.max_batch_size, torch.bfloat16)
else:
model = Transformer(model_args)
model.load_state_dict(state_dict, strict=False)
model = convert_to_quantized_model(model, config)
else:
@ -142,7 +156,11 @@ class Llama:
torch.set_default_tensor_type(torch.cuda.BFloat16Tensor)
else:
torch.set_default_tensor_type(torch.cuda.HalfTensor)
model = Transformer(model_args)
if model_args.vision_chunk_size > 0:
model = CrossAttentionTransformer(model_args)
model.setup_cache(model_args.max_batch_size, torch.bfloat16)
else:
model = Transformer(model_args)
model.load_state_dict(state_dict, strict=False)
print(f"Loaded in {time.time() - start_time:.2f} seconds")
@ -167,7 +185,11 @@ class Llama:
) -> Generator:
params = self.model.params
# cprint("Input to model -> " + self.tokenizer.decode(model_input.tokens), "red")
# input_tokens = [
# self.formatter.vision_token if t == 128256 else t
# for t in model_input.tokens
# ]
# cprint("Input to model -> " + self.tokenizer.decode(input_tokens), "red")
prompt_tokens = [model_input.tokens]
bsz = 1
@ -183,6 +205,21 @@ class Llama:
return
total_len = min(max_gen_len + max_prompt_len, params.max_seq_len)
is_vision = isinstance(self.model, CrossAttentionTransformer)
if is_vision:
images = model_input.vision.images if model_input.vision is not None else []
mask = model_input.vision.mask if model_input.vision is not None else []
# the method works for bsz > 1 so add a batch dimension
xattn_caches, cross_attention_masks, full_text_row_masked_out_mask = (
self.model.compute_vision_tokens_masks(
batch_images=[images],
batch_masks=[mask],
total_len=total_len,
)
)
pad_id = self.tokenizer.pad_id
tokens = torch.full((bsz, total_len), pad_id, dtype=torch.long, device="cuda")
for k, t in enumerate(prompt_tokens):
@ -206,7 +243,19 @@ class Llama:
stop_tokens = torch.tensor(self.tokenizer.stop_tokens)
for cur_pos in range(min_prompt_len, total_len):
logits = self.model.forward(tokens[:, prev_pos:cur_pos], prev_pos)
if is_vision:
position_ids = torch.arange(
prev_pos, cur_pos, dtype=torch.long, device="cuda"
)
logits = self.model.forward(
position_ids,
tokens,
cross_attention_masks,
full_text_row_masked_out_mask,
xattn_caches,
)
else:
logits = self.model.forward(tokens[:, prev_pos:cur_pos], prev_pos)
if temperature > 0:
probs = torch.softmax(logits[:, -1] / temperature, dim=-1)
@ -222,6 +271,18 @@ class Llama:
tokens[:, cur_pos] = next_token
target = tokens[:, prev_pos + 1 : cur_pos + 1]
if is_vision:
# the logits space (num_classes) is designed to never contain a media_token
# however our input token stream does contain them. we need to nuke them here
# or else the CUDA kernels will crash with an illegal memory access
vision_tokens = [self.tokenizer.special_tokens["<|image|>"], 128256]
masks = [target.eq(t) for t in vision_tokens]
if len(masks) > 1:
mask = torch.logical_or(*masks)
else:
mask = masks[0]
target[mask] = 0
if logprobs:
token_logprobs[:, prev_pos + 1 : cur_pos + 1] = -F.cross_entropy(
input=logits.transpose(1, 2),
@ -248,7 +309,7 @@ class Llama:
def text_completion(
self,
prompt: str,
content: InterleavedTextMedia,
temperature: float = 0.6,
top_p: float = 0.9,
max_gen_len: Optional[int] = None,
@ -262,10 +323,10 @@ class Llama:
):
max_gen_len = self.model.params.max_seq_len - 1
prompt_tokens = self.tokenizer.encode(prompt, bos=True, eos=False)
model_input = self.formatter.encode_content(content)
yield from self.generate(
model_input=ModelInput(tokens=prompt_tokens),
model_input=model_input,
max_gen_len=max_gen_len,
temperature=temperature,
top_p=top_p,

View file

@ -21,7 +21,9 @@ from llama_stack.apis.inference import (
ToolCallDelta,
ToolCallParseStatus,
)
from llama_stack.providers.utils.inference.prepare_messages import prepare_messages
from llama_stack.providers.utils.inference.augment_messages import (
augment_messages_for_tools,
)
from .config import MetaReferenceImplConfig
from .model_parallel import LlamaModelParallelGenerator
@ -57,7 +59,7 @@ class MetaReferenceInferenceImpl(Inference):
model: str,
messages: List[Message],
sampling_params: Optional[SamplingParams] = SamplingParams(),
tools: Optional[List[ToolDefinition]] = [],
tools: Optional[List[ToolDefinition]] = None,
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
stream: Optional[bool] = False,
@ -70,14 +72,14 @@ class MetaReferenceInferenceImpl(Inference):
model=model,
messages=messages,
sampling_params=sampling_params,
tools=tools,
tools=tools or [],
tool_choice=tool_choice,
tool_prompt_format=tool_prompt_format,
stream=stream,
logprobs=logprobs,
)
messages = prepare_messages(request)
messages = augment_messages_for_tools(request)
model = resolve_model(request.model)
if model is None:
raise RuntimeError(

View file

@ -7,11 +7,11 @@
from .config import SafetyConfig
async def get_provider_impl(config: SafetyConfig, _deps):
async def get_provider_impl(config: SafetyConfig, deps):
from .safety import MetaReferenceSafetyImpl
assert isinstance(config, SafetyConfig), f"Unexpected config type: {type(config)}"
impl = MetaReferenceSafetyImpl(config)
impl = MetaReferenceSafetyImpl(config, deps)
await impl.initialize()
return impl

View file

@ -31,7 +31,10 @@ class LlamaGuardShieldConfig(BaseModel):
permitted_models = [
m.descriptor()
for m in safety_models()
if m.core_model_id == CoreModelId.llama_guard_3_8b
if (
m.core_model_id
in {CoreModelId.llama_guard_3_8b, CoreModelId.llama_guard_3_11b_vision}
)
]
if model not in permitted_models:
raise ValueError(

View file

@ -7,8 +7,10 @@
from llama_models.sku_list import resolve_model
from llama_stack.distribution.utils.model_utils import model_local_dir
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.apis.safety import * # noqa: F403
from llama_models.llama3.api.datatypes import * # noqa: F403
from llama_stack.distribution.datatypes import Api
from llama_stack.providers.impls.meta_reference.safety.shields.base import (
OnViolationAction,
@ -34,20 +36,11 @@ def resolve_and_get_path(model_name: str) -> str:
class MetaReferenceSafetyImpl(Safety):
def __init__(self, config: SafetyConfig) -> None:
def __init__(self, config: SafetyConfig, deps) -> None:
self.config = config
self.inference_api = deps[Api.inference]
async def initialize(self) -> None:
shield_cfg = self.config.llama_guard_shield
if shield_cfg is not None:
model_dir = resolve_and_get_path(shield_cfg.model)
_ = LlamaGuardShield.instance(
model_dir=model_dir,
excluded_categories=shield_cfg.excluded_categories,
disable_input_check=shield_cfg.disable_input_check,
disable_output_check=shield_cfg.disable_output_check,
)
shield_cfg = self.config.prompt_guard_shield
if shield_cfg is not None:
model_dir = resolve_and_get_path(shield_cfg.model)
@ -91,11 +84,18 @@ class MetaReferenceSafetyImpl(Safety):
def get_shield_impl(self, typ: MetaReferenceShieldType) -> ShieldBase:
cfg = self.config
if typ == MetaReferenceShieldType.llama_guard:
cfg = cfg.llama_guard_shield
assert (
cfg.llama_guard_shield is not None
cfg is not None
), "Cannot use LlamaGuardShield since not present in config"
model_dir = resolve_and_get_path(cfg.llama_guard_shield.model)
return LlamaGuardShield.instance(model_dir=model_dir)
return LlamaGuardShield(
model=cfg.model,
inference_api=self.inference_api,
excluded_categories=cfg.excluded_categories,
disable_input_check=cfg.disable_input_check,
disable_output_check=cfg.disable_output_check,
)
elif typ == MetaReferenceShieldType.jailbreak_shield:
assert (
cfg.prompt_guard_shield is not None

View file

@ -9,9 +9,8 @@ import re
from string import Template
from typing import List, Optional
import torch
from llama_models.llama3.api.datatypes import Message, Role
from transformers import AutoModelForCausalLM, AutoTokenizer
from llama_stack.apis.inference import * # noqa: F403
from .base import CANNED_RESPONSE_TEXT, OnViolationAction, ShieldBase, ShieldResponse
@ -100,39 +99,17 @@ PROMPT_TEMPLATE = Template(
class LlamaGuardShield(ShieldBase):
@staticmethod
def instance(
on_violation_action=OnViolationAction.RAISE,
model_dir: str = None,
excluded_categories: List[str] = None,
disable_input_check: bool = False,
disable_output_check: bool = False,
) -> "LlamaGuardShield":
global _INSTANCE
if _INSTANCE is None:
_INSTANCE = LlamaGuardShield(
on_violation_action,
model_dir,
excluded_categories,
disable_input_check,
disable_output_check,
)
return _INSTANCE
def __init__(
self,
on_violation_action: OnViolationAction = OnViolationAction.RAISE,
model_dir: str = None,
model: str,
inference_api: Inference,
excluded_categories: List[str] = None,
disable_input_check: bool = False,
disable_output_check: bool = False,
on_violation_action: OnViolationAction = OnViolationAction.RAISE,
):
super().__init__(on_violation_action)
dtype = torch.bfloat16
assert model_dir is not None, "Llama Guard model_dir is None"
if excluded_categories is None:
excluded_categories = []
@ -140,18 +117,12 @@ class LlamaGuardShield(ShieldBase):
x in SAFETY_CATEGORIES_TO_CODE_MAP.values() for x in excluded_categories
), "Invalid categories in excluded categories. Expected format is ['S1', 'S2', ..]"
self.device = "cuda"
self.model = model
self.inference_api = inference_api
self.excluded_categories = excluded_categories
self.disable_input_check = disable_input_check
self.disable_output_check = disable_output_check
# load model
torch_dtype = torch.bfloat16
self.tokenizer = AutoTokenizer.from_pretrained(model_dir)
self.model = AutoModelForCausalLM.from_pretrained(
model_dir, torch_dtype=torch_dtype, device_map=self.device
)
def check_unsafe_response(self, response: str) -> Optional[str]:
match = re.match(r"^unsafe\n(.*)$", response)
if match:
@ -212,26 +183,21 @@ class LlamaGuardShield(ShieldBase):
)
else:
prompt = self.build_prompt(messages)
llama_guard_input = {
"role": "user",
"content": prompt,
}
input_ids = self.tokenizer.apply_chat_template(
[llama_guard_input], return_tensors="pt", tokenize=True
).to(self.device)
prompt_len = input_ids.shape[1]
output = self.model.generate(
input_ids=input_ids,
max_new_tokens=20,
output_scores=True,
return_dict_in_generate=True,
pad_token_id=0,
)
generated_tokens = output.sequences[:, prompt_len:]
response = self.tokenizer.decode(
generated_tokens[0], skip_special_tokens=True
)
response = response.strip()
shield_response = self.get_shield_response(response)
# TODO: llama-stack inference protocol has issues with non-streaming inference code
content = ""
async for chunk in self.inference_api.chat_completion(
model=self.model,
messages=[
UserMessage(content=prompt),
],
stream=True,
):
event = chunk.event
if event.event_type == ChatCompletionResponseEventType.progress:
assert isinstance(event.delta, str)
content += event.delta
content = content.strip()
shield_response = self.get_shield_response(content)
return shield_response