Initial commit

This commit is contained in:
Ashwin Bharambe 2024-06-25 15:47:57 -07:00 committed by Ashwin Bharambe
commit 5d5acc8ed5
81 changed files with 4458 additions and 0 deletions

View file

@ -0,0 +1,5 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.

View file

@ -0,0 +1,97 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import argparse
import os
import textwrap
from pathlib import Path
from huggingface_hub import snapshot_download
from huggingface_hub.utils import GatedRepoError, RepositoryNotFoundError
from llama_toolchain.cli.subcommand import Subcommand
from llama_toolchain.utils import DEFAULT_DUMP_DIR
DEFAULT_CHECKPOINT_DIR = os.path.join(DEFAULT_DUMP_DIR, "checkpoints")
class Download(Subcommand):
"""Llama cli for downloading llama toolchain assets"""
def __init__(self, subparsers: argparse._SubParsersAction):
super().__init__()
self.parser = subparsers.add_parser(
"download",
prog="llama download",
description="Download a model from the Hugging Face Hub",
epilog=textwrap.dedent(
"""\
# Here are some examples on how to use this command:
llama download --repo-id meta-llama/Llama-2-7b-hf --hf-token <HF_TOKEN>
llama download --repo-id meta-llama/Llama-2-7b-hf --output-dir /data/my_custom_dir --hf-token <HF_TOKEN>
HF_TOKEN=<HF_TOKEN> llama download --repo-id meta-llama/Llama-2-7b-hf
The output directory will be used to load models and tokenizers for inference.
"""
),
formatter_class=argparse.RawTextHelpFormatter,
)
self._add_arguments()
self.parser.set_defaults(func=self._run_download_cmd)
def _add_arguments(self):
self.parser.add_argument(
"repo_id",
type=str,
help="Name of the repository on Hugging Face Hub eg. llhf/Meta-Llama-3.1-70B-Instruct",
)
self.parser.add_argument(
"--hf-token",
type=str,
required=False,
default=os.getenv("HF_TOKEN", None),
help="Hugging Face API token. Needed for gated models like Llama2. Will also try to read environment variable `HF_TOKEN` as default.",
)
self.parser.add_argument(
"--ignore-patterns",
type=str,
required=False,
default="*.safetensors",
help="If provided, files matching any of the patterns are not downloaded. Defaults to ignoring "
"safetensors files to avoid downloading duplicate weights.",
)
def _run_download_cmd(self, args: argparse.Namespace):
model_name = args.repo_id.split("/")[-1]
output_dir = Path(DEFAULT_CHECKPOINT_DIR) / model_name
os.makedirs(output_dir, exist_ok=True)
try:
true_output_dir = snapshot_download(
args.repo_id,
local_dir=output_dir,
# "auto" will download to cache_dir and symlink files to local_dir
# avoiding unnecessary duplicate copies
local_dir_use_symlinks="auto",
ignore_patterns=args.ignore_patterns,
token=args.hf_token,
)
except GatedRepoError:
self.parser.error(
"It looks like you are trying to access a gated repository. Please ensure you "
"have access to the repository and have provided the proper Hugging Face API token "
"using the option `--hf-token` or by running `huggingface-cli login`."
"You can find your token by visiting https://huggingface.co/settings/tokens"
)
except RepositoryNotFoundError:
self.parser.error(
f"Repository '{args.repo_id}' not found on the Hugging Face Hub."
)
except Exception as e:
self.parser.error(e)
print(f"Successfully downloaded model to {true_output_dir}")

View file

@ -0,0 +1,5 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.

View file

@ -0,0 +1,91 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import argparse
import os
import textwrap
from pathlib import Path
import pkg_resources
from llama_toolchain.cli.subcommand import Subcommand
from llama_toolchain.utils import DEFAULT_DUMP_DIR
CONFIGS_BASE_DIR = os.path.join(DEFAULT_DUMP_DIR, "configs")
class InferenceConfigure(Subcommand):
"""Llama cli for configuring llama toolchain configs"""
def __init__(self, subparsers: argparse._SubParsersAction):
super().__init__()
self.parser = subparsers.add_parser(
"configure",
prog="llama inference configure",
description="Configure llama toolchain inference configs",
epilog=textwrap.dedent(
"""
Example:
llama inference configure
"""
),
formatter_class=argparse.RawTextHelpFormatter,
)
self._add_arguments()
self.parser.set_defaults(func=self._run_inference_configure_cmd)
def _add_arguments(self):
pass
def read_user_inputs(self):
checkpoint_dir = input(
"Enter the checkpoint directory for the model (e.g., ~/.llama/checkpoints/Meta-Llama-3-8B/): "
)
model_parallel_size = input(
"Enter model parallel size (e.g., 1 for 8B / 8 for 70B and 405B): "
)
assert model_parallel_size.isdigit() and int(model_parallel_size) in {
1,
8,
}, "model parallel size must be 1 or 8"
return checkpoint_dir, model_parallel_size
def write_output_yaml(self, checkpoint_dir, model_parallel_size, yaml_output_path):
default_conf_path = pkg_resources.resource_filename(
"llama_toolchain", "data/default_inference_config.yaml"
)
with open(default_conf_path, "r") as f:
yaml_content = f.read()
yaml_content = yaml_content.format(
checkpoint_dir=checkpoint_dir,
model_parallel_size=model_parallel_size,
)
with open(yaml_output_path, "w") as yaml_file:
yaml_file.write(yaml_content.strip())
print(f"YAML configuration has been written to {yaml_output_path}")
def _run_inference_configure_cmd(self, args: argparse.Namespace) -> None:
checkpoint_dir, model_parallel_size = self.read_user_inputs()
checkpoint_dir = os.path.expanduser(checkpoint_dir)
assert (
Path(checkpoint_dir).exists() and Path(checkpoint_dir).is_dir()
), f"{checkpoint_dir} does not exist or it not a directory"
os.makedirs(CONFIGS_BASE_DIR, exist_ok=True)
yaml_output_path = Path(CONFIGS_BASE_DIR) / "inference.yaml"
self.write_output_yaml(
checkpoint_dir,
model_parallel_size,
yaml_output_path,
)

View file

@ -0,0 +1,36 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import argparse
import textwrap
from llama_toolchain.cli.inference.configure import InferenceConfigure
from llama_toolchain.cli.inference.start import InferenceStart
from llama_toolchain.cli.subcommand import Subcommand
class InferenceParser(Subcommand):
"""Llama cli for inference apis"""
def __init__(self, subparsers: argparse._SubParsersAction):
super().__init__()
self.parser = subparsers.add_parser(
"inference",
prog="llama inference",
description="Run inference on a llama model",
epilog=textwrap.dedent(
"""
Example:
llama inference start <options>
"""
),
)
subparsers = self.parser.add_subparsers(title="inference_subcommands")
# Add sub-commandsa
InferenceStart.create(subparsers)
InferenceConfigure.create(subparsers)

View file

@ -0,0 +1,57 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import argparse
import textwrap
from llama_toolchain.cli.subcommand import Subcommand
from llama_toolchain.inference.server import main as inference_server_init
class InferenceStart(Subcommand):
"""Llama Inference cli for starting inference server"""
def __init__(self, subparsers: argparse._SubParsersAction):
super().__init__()
self.parser = subparsers.add_parser(
"start",
prog="llama inference start",
description="Start an inference server",
epilog=textwrap.dedent(
"""
Example:
llama inference start <options>
"""
),
formatter_class=argparse.RawTextHelpFormatter,
)
self._add_arguments()
self.parser.set_defaults(func=self._run_inference_start_cmd)
def _add_arguments(self):
self.parser.add_argument(
"--port",
type=int,
help="Port to run the server on. Defaults to 5000",
default=5000,
)
self.parser.add_argument(
"--disable-ipv6",
action="store_true",
help="Disable IPv6 support",
default=False,
)
self.parser.add_argument(
"--config", type=str, help="Path to config file", default="inference"
)
def _run_inference_start_cmd(self, args: argparse.Namespace) -> None:
inference_server_init(
config_path=args.config,
port=args.port,
disable_ipv6=args.disable_ipv6,
)

View file

@ -0,0 +1,58 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import argparse
from llama_toolchain.cli.download import Download
from llama_toolchain.cli.inference.inference import InferenceParser
from llama_toolchain.cli.model.model import ModelParser
class LlamaCLIParser:
"""Defines CLI parser for Llama CLI"""
def __init__(self):
self.parser = argparse.ArgumentParser(
prog="llama",
description="Welcome to the LLama cli",
add_help=True,
)
# Default command is to print help
self.parser.set_defaults(func=lambda args: self.parser.print_help())
subparsers = self.parser.add_subparsers(title="subcommands")
# Add sub-commands
Download.create(subparsers)
InferenceParser.create(subparsers)
ModelParser.create(subparsers)
# Import sub-commands from agentic_system if they exist
try:
from llama_agentic_system.cli.subcommand_modules import SUBCOMMAND_MODULES
for module in SUBCOMMAND_MODULES:
module.create(subparsers)
except ImportError:
pass
def parse_args(self) -> argparse.Namespace:
return self.parser.parse_args()
def run(self, args: argparse.Namespace) -> None:
args.func(args)
def main():
parser = LlamaCLIParser()
args = parser.parse_args()
parser.run(args)
if __name__ == "__main__":
main()

View file

@ -0,0 +1,5 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.

View file

@ -0,0 +1,35 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import argparse
import textwrap
from llama_toolchain.cli.model.template import ModelTemplate
from llama_toolchain.cli.subcommand import Subcommand
class ModelParser(Subcommand):
"""Llama cli for model interface apis"""
def __init__(self, subparsers: argparse._SubParsersAction):
super().__init__()
self.parser = subparsers.add_parser(
"model",
prog="llama model",
description="Describe llama model interfaces",
epilog=textwrap.dedent(
"""
Example:
llama model <subcommand> <options>
"""
),
)
subparsers = self.parser.add_subparsers(title="model_subcommands")
# Add sub-commandsa
# ModelDescribe.create(subparsers)
ModelTemplate.create(subparsers)

View file

@ -0,0 +1,57 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import argparse
import textwrap
from llama_models.llama3_1.api.interface import (
list_jinja_templates,
render_jinja_template,
)
from llama_toolchain.cli.subcommand import Subcommand
class ModelTemplate(Subcommand):
"""Llama model cli for describe a model template (message formats)"""
def __init__(self, subparsers: argparse._SubParsersAction):
super().__init__()
self.parser = subparsers.add_parser(
"template",
prog="llama model template",
description="Show llama model message formats",
epilog=textwrap.dedent(
"""
Example:
llama model template <options>
"""
),
formatter_class=argparse.RawTextHelpFormatter,
)
self._add_arguments()
self.parser.set_defaults(func=self._run_model_template_cmd)
def _add_arguments(self):
self.parser.add_argument(
"-m",
"--model-family",
type=str,
default="llama3_1",
help="Model Family (llama3_1, llama3_X, etc.)",
)
self.parser.add_argument(
"--template",
type=str,
help="Usecase template name (system_message, user_message, assistant_message, tool_message)...",
required=False,
)
def _run_model_template_cmd(self, args: argparse.Namespace) -> None:
if args.template:
render_jinja_template(args.template)
else:
list_jinja_templates()

View file

@ -0,0 +1,19 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
class Subcommand:
"""All llama cli subcommands must inherit from this class"""
def __init__(self, *args, **kwargs):
pass
@classmethod
def create(cls, *args, **kwargs):
return cls(*args, **kwargs)
def _add_arguments(self):
pass