forked from phoenix-oss/llama-stack-mirror
Initial commit
This commit is contained in:
commit
5d5acc8ed5
81 changed files with 4458 additions and 0 deletions
252
llama_toolchain/safety/shields/llama_guard.py
Normal file
252
llama_toolchain/safety/shields/llama_guard.py
Normal file
|
@ -0,0 +1,252 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import re
|
||||
|
||||
from string import Template
|
||||
from typing import List, Optional
|
||||
|
||||
import torch
|
||||
from llama_models.llama3_1.api.datatypes import Message, Role
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
from .base import CANNED_RESPONSE_TEXT, OnViolationAction, ShieldBase, ShieldResponse
|
||||
from llama_toolchain.safety.api.datatypes import * # noqa: F403
|
||||
|
||||
SAFE_RESPONSE = "safe"
|
||||
_INSTANCE = None
|
||||
|
||||
CAT_VIOLENT_CRIMES = "Violent Crimes"
|
||||
CAT_NON_VIOLENT_CRIMES = "Non-Violent Crimes"
|
||||
CAT_SEX_CRIMES = "Sex Crimes"
|
||||
CAT_CHILD_EXPLOITATION = "Child Exploitation"
|
||||
CAT_DEFAMATION = "Defamation"
|
||||
CAT_SPECIALIZED_ADVICE = "Specialized Advice"
|
||||
CAT_PRIVACY = "Privacy"
|
||||
CAT_INTELLECTUAL_PROPERTY = "Intellectual Property"
|
||||
CAT_INDISCRIMINATE_WEAPONS = "Indiscriminate Weapons"
|
||||
CAT_HATE = "Hate"
|
||||
CAT_SELF_HARM = "Self-Harm"
|
||||
CAT_SEXUAL_CONTENT = "Sexual Content"
|
||||
CAT_ELECTIONS = "Elections"
|
||||
CAT_CODE_INTERPRETER_ABUSE = "Code Interpreter Abuse"
|
||||
|
||||
|
||||
SAFETY_CATEGORIES_TO_CODE_MAP = {
|
||||
CAT_VIOLENT_CRIMES: "S1",
|
||||
CAT_NON_VIOLENT_CRIMES: "S2",
|
||||
CAT_SEX_CRIMES: "S3",
|
||||
CAT_CHILD_EXPLOITATION: "S4",
|
||||
CAT_DEFAMATION: "S5",
|
||||
CAT_SPECIALIZED_ADVICE: "S6",
|
||||
CAT_PRIVACY: "S7",
|
||||
CAT_INTELLECTUAL_PROPERTY: "S8",
|
||||
CAT_INDISCRIMINATE_WEAPONS: "S9",
|
||||
CAT_HATE: "S10",
|
||||
CAT_SELF_HARM: "S11",
|
||||
CAT_SEXUAL_CONTENT: "S12",
|
||||
CAT_ELECTIONS: "S13",
|
||||
CAT_CODE_INTERPRETER_ABUSE: "S14",
|
||||
}
|
||||
|
||||
|
||||
DEFAULT_LG_V3_SAFETY_CATEGORIES = [
|
||||
CAT_VIOLENT_CRIMES,
|
||||
CAT_NON_VIOLENT_CRIMES,
|
||||
CAT_SEX_CRIMES,
|
||||
CAT_CHILD_EXPLOITATION,
|
||||
CAT_DEFAMATION,
|
||||
CAT_SPECIALIZED_ADVICE,
|
||||
CAT_PRIVACY,
|
||||
CAT_INTELLECTUAL_PROPERTY,
|
||||
CAT_INDISCRIMINATE_WEAPONS,
|
||||
CAT_HATE,
|
||||
CAT_SELF_HARM,
|
||||
CAT_SEXUAL_CONTENT,
|
||||
CAT_ELECTIONS,
|
||||
CAT_CODE_INTERPRETER_ABUSE,
|
||||
]
|
||||
|
||||
PROMPT_TASK = "Task: Check if there is unsafe content in '$agent_type' messages in conversations according our safety policy with the below categories."
|
||||
|
||||
SAFETY_CATEGORIES = """
|
||||
|
||||
<BEGIN UNSAFE CONTENT CATEGORIES>
|
||||
$categories
|
||||
<END UNSAFE CONTENT CATEGORIES>
|
||||
"""
|
||||
|
||||
PROMPT_CONVERSATION = """
|
||||
<BEGIN CONVERSATION>
|
||||
|
||||
$conversations
|
||||
|
||||
<END CONVERSATION>
|
||||
"""
|
||||
|
||||
|
||||
PROMPT_INSTRUCTIONS = """
|
||||
Provide your safety assessment for ONLY THE LAST $agent_type message in the above conversation:
|
||||
- First line must read 'safe' or 'unsafe'.
|
||||
- If unsafe, a second line must include a comma-separated list of violated categories."""
|
||||
|
||||
|
||||
PROMPT_TEMPLATE = Template(
|
||||
f"{PROMPT_TASK}{SAFETY_CATEGORIES}{PROMPT_CONVERSATION}{PROMPT_INSTRUCTIONS}"
|
||||
)
|
||||
|
||||
|
||||
class LlamaGuardShield(ShieldBase):
|
||||
|
||||
@staticmethod
|
||||
def instance(
|
||||
on_violation_action=OnViolationAction.RAISE,
|
||||
model_dir: str = None,
|
||||
excluded_categories: List[str] = None,
|
||||
disable_input_check: bool = False,
|
||||
disable_output_check: bool = False,
|
||||
) -> "LlamaGuardShield":
|
||||
global _INSTANCE
|
||||
if _INSTANCE is None:
|
||||
_INSTANCE = LlamaGuardShield(
|
||||
on_violation_action,
|
||||
model_dir,
|
||||
excluded_categories,
|
||||
disable_input_check,
|
||||
disable_output_check,
|
||||
)
|
||||
return _INSTANCE
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
on_violation_action: OnViolationAction = OnViolationAction.RAISE,
|
||||
model_dir: str = None,
|
||||
excluded_categories: List[str] = None,
|
||||
disable_input_check: bool = False,
|
||||
disable_output_check: bool = False,
|
||||
):
|
||||
super().__init__(on_violation_action)
|
||||
|
||||
dtype = torch.bfloat16
|
||||
|
||||
assert model_dir is not None, "Llama Guard model_dir is None"
|
||||
|
||||
if excluded_categories is None:
|
||||
excluded_categories = []
|
||||
|
||||
assert len(excluded_categories) == 0 or all(
|
||||
x in SAFETY_CATEGORIES_TO_CODE_MAP.values() for x in excluded_categories
|
||||
), "Invalid categories in excluded categories. Expected format is ['S1', 'S2', ..]"
|
||||
|
||||
self.device = "cuda"
|
||||
self.excluded_categories = excluded_categories
|
||||
self.disable_input_check = disable_input_check
|
||||
self.disable_output_check = disable_output_check
|
||||
|
||||
# load model
|
||||
torch_dtype = torch.bfloat16
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(model_dir)
|
||||
self.model = AutoModelForCausalLM.from_pretrained(
|
||||
model_dir, torch_dtype=torch_dtype, device_map=self.device
|
||||
)
|
||||
|
||||
def get_shield_type(self) -> ShieldType:
|
||||
return BuiltinShield.llama_guard
|
||||
|
||||
def check_unsafe_response(self, response: str) -> Optional[str]:
|
||||
match = re.match(r"^unsafe\n(.*)$", response)
|
||||
if match:
|
||||
# extracts the unsafe code
|
||||
extracted = match.group(1)
|
||||
return extracted
|
||||
|
||||
return None
|
||||
|
||||
def get_safety_categories(self) -> List[str]:
|
||||
|
||||
excluded_categories = self.excluded_categories
|
||||
if set(excluded_categories) == set(SAFETY_CATEGORIES_TO_CODE_MAP.values()):
|
||||
excluded_categories = []
|
||||
|
||||
categories = []
|
||||
for cat in DEFAULT_LG_V3_SAFETY_CATEGORIES:
|
||||
cat_code = SAFETY_CATEGORIES_TO_CODE_MAP[cat]
|
||||
if cat_code in excluded_categories:
|
||||
continue
|
||||
categories.append(f"{cat_code}: {cat}.")
|
||||
|
||||
return categories
|
||||
|
||||
def build_prompt(self, messages: List[Message]) -> str:
|
||||
|
||||
categories = self.get_safety_categories()
|
||||
categories_str = "\n".join(categories)
|
||||
conversations_str = "\n\n".join(
|
||||
[f"{m.role.capitalize()}: {m.content}" for m in messages]
|
||||
)
|
||||
return PROMPT_TEMPLATE.substitute(
|
||||
agent_type=messages[-1].role.capitalize(),
|
||||
categories=categories_str,
|
||||
conversations=conversations_str,
|
||||
)
|
||||
|
||||
def get_shield_response(self, response: str) -> ShieldResponse:
|
||||
if response == SAFE_RESPONSE:
|
||||
return ShieldResponse(
|
||||
shield_type=BuiltinShield.llama_guard, is_violation=False
|
||||
)
|
||||
unsafe_code = self.check_unsafe_response(response)
|
||||
if unsafe_code:
|
||||
unsafe_code_list = unsafe_code.split(",")
|
||||
if set(unsafe_code_list).issubset(set(self.excluded_categories)):
|
||||
return ShieldResponse(
|
||||
shield_type=BuiltinShield.llama_guard, is_violation=False
|
||||
)
|
||||
return ShieldResponse(
|
||||
shield_type=BuiltinShield.llama_guard,
|
||||
is_violation=True,
|
||||
violation_type=unsafe_code,
|
||||
violation_return_message=CANNED_RESPONSE_TEXT,
|
||||
)
|
||||
|
||||
raise ValueError(f"Unexpected response: {response}")
|
||||
|
||||
async def run(self, messages: List[Message]) -> ShieldResponse:
|
||||
if self.disable_input_check and messages[-1].role == Role.user.value:
|
||||
return ShieldResponse(
|
||||
shield_type=BuiltinShield.llama_guard, is_violation=False
|
||||
)
|
||||
elif self.disable_output_check and messages[-1].role == Role.assistant.value:
|
||||
return ShieldResponse(
|
||||
shield_type=BuiltinShield.llama_guard,
|
||||
is_violation=False,
|
||||
)
|
||||
else:
|
||||
|
||||
prompt = self.build_prompt(messages)
|
||||
llama_guard_input = {
|
||||
"role": "user",
|
||||
"content": prompt,
|
||||
}
|
||||
input_ids = self.tokenizer.apply_chat_template(
|
||||
[llama_guard_input], return_tensors="pt", tokenize=True
|
||||
).to(self.device)
|
||||
prompt_len = input_ids.shape[1]
|
||||
output = self.model.generate(
|
||||
input_ids=input_ids,
|
||||
max_new_tokens=20,
|
||||
output_scores=True,
|
||||
return_dict_in_generate=True,
|
||||
pad_token_id=0,
|
||||
)
|
||||
generated_tokens = output.sequences[:, prompt_len:]
|
||||
|
||||
response = self.tokenizer.decode(
|
||||
generated_tokens[0], skip_special_tokens=True
|
||||
)
|
||||
response = response.strip()
|
||||
shield_response = self.get_shield_response(response)
|
||||
return shield_response
|
Loading…
Add table
Add a link
Reference in a new issue