forked from phoenix-oss/llama-stack-mirror
Query generators for RAG query (#54)
* Query generators for rag query * use agent.inference_api instead of passing host/port again * drop classes for functions --------- Co-authored-by: Hardik Shah <hjshah@fb.com>
This commit is contained in:
parent
406c3b24d4
commit
5de6ed946e
3 changed files with 118 additions and 2 deletions
|
@ -116,10 +116,47 @@ MemoryBankConfig = Annotated[
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
@json_schema_type
|
class MemoryQueryGenerator(Enum):
|
||||||
|
default = "default"
|
||||||
|
llm = "llm"
|
||||||
|
custom = "custom"
|
||||||
|
|
||||||
|
|
||||||
|
class DefaultMemoryQueryGeneratorConfig(BaseModel):
|
||||||
|
type: Literal[MemoryQueryGenerator.default.value] = (
|
||||||
|
MemoryQueryGenerator.default.value
|
||||||
|
)
|
||||||
|
sep: str = " "
|
||||||
|
|
||||||
|
|
||||||
|
class LLMMemoryQueryGeneratorConfig(BaseModel):
|
||||||
|
type: Literal[MemoryQueryGenerator.llm.value] = MemoryQueryGenerator.llm.value
|
||||||
|
model: str
|
||||||
|
template: str
|
||||||
|
|
||||||
|
|
||||||
|
class CustomMemoryQueryGeneratorConfig(BaseModel):
|
||||||
|
type: Literal[MemoryQueryGenerator.custom.value] = MemoryQueryGenerator.custom.value
|
||||||
|
|
||||||
|
|
||||||
|
MemoryQueryGeneratorConfig = Annotated[
|
||||||
|
Union[
|
||||||
|
DefaultMemoryQueryGeneratorConfig,
|
||||||
|
LLMMemoryQueryGeneratorConfig,
|
||||||
|
CustomMemoryQueryGeneratorConfig,
|
||||||
|
],
|
||||||
|
Field(discriminator="type"),
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
class MemoryToolDefinition(ToolDefinitionCommon):
|
class MemoryToolDefinition(ToolDefinitionCommon):
|
||||||
type: Literal[AgenticSystemTool.memory.value] = AgenticSystemTool.memory.value
|
type: Literal[AgenticSystemTool.memory.value] = AgenticSystemTool.memory.value
|
||||||
memory_bank_configs: List[MemoryBankConfig] = Field(default_factory=list)
|
memory_bank_configs: List[MemoryBankConfig] = Field(default_factory=list)
|
||||||
|
# This config defines how a query is generated using the messages
|
||||||
|
# for memory bank retrieval.
|
||||||
|
query_generator_config: MemoryQueryGeneratorConfig = Field(
|
||||||
|
default=DefaultMemoryQueryGeneratorConfig()
|
||||||
|
)
|
||||||
max_tokens_in_context: int = 4096
|
max_tokens_in_context: int = 4096
|
||||||
max_chunks: int = 10
|
max_chunks: int = 10
|
||||||
|
|
||||||
|
|
|
@ -31,6 +31,7 @@ from llama_toolchain.tools.builtin import (
|
||||||
SingleMessageBuiltinTool,
|
SingleMessageBuiltinTool,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
from .rag.context_retriever import generate_rag_query
|
||||||
from .safety import SafetyException, ShieldRunnerMixin
|
from .safety import SafetyException, ShieldRunnerMixin
|
||||||
|
|
||||||
|
|
||||||
|
@ -664,7 +665,9 @@ class ChatAgent(ShieldRunnerMixin):
|
||||||
# (i.e., no prior turns uploaded an Attachment)
|
# (i.e., no prior turns uploaded an Attachment)
|
||||||
return None, []
|
return None, []
|
||||||
|
|
||||||
query = " ".join(m.content for m in messages)
|
query = await generate_rag_query(
|
||||||
|
memory.query_generator_config, messages, inference_api=self.inference_api
|
||||||
|
)
|
||||||
tasks = [
|
tasks = [
|
||||||
self.memory_api.query_documents(
|
self.memory_api.query_documents(
|
||||||
bank_id=bank_id,
|
bank_id=bank_id,
|
||||||
|
|
|
@ -0,0 +1,76 @@
|
||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
#
|
||||||
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
|
# the root directory of this source tree.
|
||||||
|
|
||||||
|
from typing import List
|
||||||
|
|
||||||
|
from jinja2 import Template
|
||||||
|
from llama_models.llama3.api import * # noqa: F403
|
||||||
|
|
||||||
|
|
||||||
|
from llama_toolchain.agentic_system.api import (
|
||||||
|
DefaultMemoryQueryGeneratorConfig,
|
||||||
|
LLMMemoryQueryGeneratorConfig,
|
||||||
|
MemoryQueryGenerator,
|
||||||
|
MemoryQueryGeneratorConfig,
|
||||||
|
)
|
||||||
|
from termcolor import cprint # noqa: F401
|
||||||
|
from llama_toolchain.inference.api import * # noqa: F403
|
||||||
|
|
||||||
|
|
||||||
|
async def generate_rag_query(
|
||||||
|
config: MemoryQueryGeneratorConfig,
|
||||||
|
messages: List[Message],
|
||||||
|
**kwargs,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Generates a query that will be used for
|
||||||
|
retrieving relevant information from the memory bank.
|
||||||
|
"""
|
||||||
|
if config.type == MemoryQueryGenerator.default.value:
|
||||||
|
query = await default_rag_query_generator(config, messages, **kwargs)
|
||||||
|
elif config.type == MemoryQueryGenerator.llm.value:
|
||||||
|
query = await llm_rag_query_generator(config, messages, **kwargs)
|
||||||
|
else:
|
||||||
|
raise NotImplementedError(f"Unsupported memory query generator {config.type}")
|
||||||
|
# cprint(f"Generated query >>>: {query}", color="green")
|
||||||
|
return query
|
||||||
|
|
||||||
|
|
||||||
|
async def default_rag_query_generator(
|
||||||
|
config: DefaultMemoryQueryGeneratorConfig,
|
||||||
|
messages: List[Message],
|
||||||
|
**kwargs,
|
||||||
|
):
|
||||||
|
return config.sep.join(interleaved_text_media_as_str(m.content) for m in messages)
|
||||||
|
|
||||||
|
|
||||||
|
async def llm_rag_query_generator(
|
||||||
|
config: LLMMemoryQueryGeneratorConfig,
|
||||||
|
messages: List[Message],
|
||||||
|
**kwargs,
|
||||||
|
):
|
||||||
|
assert "inference_api" in kwargs, "LLMRAGQueryGenerator needs inference_api"
|
||||||
|
inference_api = kwargs["inference_api"]
|
||||||
|
|
||||||
|
m_dict = {"messages": [m.model_dump() for m in messages]}
|
||||||
|
|
||||||
|
template = Template(config.template)
|
||||||
|
content = template.render(m_dict)
|
||||||
|
|
||||||
|
model = config.model
|
||||||
|
message = UserMessage(content=content)
|
||||||
|
response = inference_api.chat_completion(
|
||||||
|
ChatCompletionRequest(
|
||||||
|
model=model,
|
||||||
|
messages=[message],
|
||||||
|
stream=False,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
async for chunk in response:
|
||||||
|
query = chunk.completion_message.content
|
||||||
|
|
||||||
|
return query
|
Loading…
Add table
Add a link
Reference in a new issue