forked from phoenix-oss/llama-stack-mirror
[Evals API][10/n] API updates for EvalTaskDef + new test migration (#379)
* wip * scoring fn api * eval api * eval task * evaluate api update * pre commit * unwrap context -> config * config field doc * typo * naming fix * separate benchmark / app eval * api name * rename * wip tests * wip * datasetio test * delete unused * fixture * scoring resolve * fix scoring register * scoring test pass * score batch * scoring fix * fix eval * test eval works * remove type ignore * api refactor * add default task_eval_id for routing * add eval_id for jobs * remove type ignore * only keep 1 run_eval * fix optional * register task required * register task required * delete old tests * delete old tests * fixture return impl
This commit is contained in:
parent
8350f2df4c
commit
6192bf43a4
32 changed files with 916 additions and 389 deletions
|
@ -6,13 +6,15 @@
|
|||
from enum import Enum
|
||||
from llama_models.llama3.api.datatypes import * # noqa: F403
|
||||
|
||||
from .....apis.common.job_types import Job
|
||||
from .....apis.eval.eval import Eval, EvalTaskConfig, EvaluateResponse, JobStatus
|
||||
from llama_stack.apis.common.type_system import * # noqa: F403
|
||||
from llama_stack.apis.common.job_types import Job
|
||||
from llama_stack.apis.datasetio import DatasetIO
|
||||
from llama_stack.apis.datasets import Datasets
|
||||
from llama_stack.apis.eval import Eval, EvalCandidate, EvaluateResponse, JobStatus
|
||||
from llama_stack.apis.eval_tasks import EvalTaskDef
|
||||
from llama_stack.apis.inference import Inference
|
||||
from llama_stack.apis.scoring import Scoring
|
||||
from llama_stack.providers.datatypes import EvalTasksProtocolPrivate
|
||||
|
||||
from .config import MetaReferenceEvalConfig
|
||||
|
||||
|
@ -25,7 +27,7 @@ class ColumnName(Enum):
|
|||
generated_answer = "generated_answer"
|
||||
|
||||
|
||||
class MetaReferenceEvalImpl(Eval):
|
||||
class MetaReferenceEvalImpl(Eval, EvalTasksProtocolPrivate):
|
||||
def __init__(
|
||||
self,
|
||||
config: MetaReferenceEvalConfig,
|
||||
|
@ -43,10 +45,18 @@ class MetaReferenceEvalImpl(Eval):
|
|||
# TODO: assume sync job, will need jobs API for async scheduling
|
||||
self.jobs = {}
|
||||
|
||||
self.eval_tasks = {}
|
||||
|
||||
async def initialize(self) -> None: ...
|
||||
|
||||
async def shutdown(self) -> None: ...
|
||||
|
||||
async def register_eval_task(self, task_def: EvalTaskDef) -> None:
|
||||
self.eval_tasks[task_def.identifier] = task_def
|
||||
|
||||
async def list_eval_tasks(self) -> List[EvalTaskDef]:
|
||||
return list(self.eval_tasks.values())
|
||||
|
||||
async def validate_eval_input_dataset_schema(self, dataset_id: str) -> None:
|
||||
dataset_def = await self.datasets_api.get_dataset(dataset_identifier=dataset_id)
|
||||
if not dataset_def.dataset_schema or len(dataset_def.dataset_schema) == 0:
|
||||
|
@ -70,21 +80,26 @@ class MetaReferenceEvalImpl(Eval):
|
|||
f"Dataset {dataset_id} does not have a correct input schema in {expected_schemas}"
|
||||
)
|
||||
|
||||
async def evaluate_batch(
|
||||
async def run_eval(
|
||||
self,
|
||||
dataset_id: str,
|
||||
candidate: EvalCandidate,
|
||||
scoring_functions: List[str],
|
||||
task_id: str,
|
||||
task_config: EvalTaskConfig,
|
||||
) -> Job:
|
||||
task_def = self.eval_tasks[task_id]
|
||||
dataset_id = task_def.dataset_id
|
||||
candidate = task_config.eval_candidate
|
||||
scoring_functions = task_def.scoring_functions
|
||||
|
||||
await self.validate_eval_input_dataset_schema(dataset_id=dataset_id)
|
||||
all_rows = await self.datasetio_api.get_rows_paginated(
|
||||
dataset_id=dataset_id,
|
||||
rows_in_page=-1,
|
||||
)
|
||||
res = await self.evaluate(
|
||||
res = await self.evaluate_rows(
|
||||
task_id=task_id,
|
||||
input_rows=all_rows.rows,
|
||||
candidate=candidate,
|
||||
scoring_functions=scoring_functions,
|
||||
task_config=task_config,
|
||||
)
|
||||
|
||||
# TODO: currently needs to wait for generation before returning
|
||||
|
@ -93,12 +108,14 @@ class MetaReferenceEvalImpl(Eval):
|
|||
self.jobs[job_id] = res
|
||||
return Job(job_id=job_id)
|
||||
|
||||
async def evaluate(
|
||||
async def evaluate_rows(
|
||||
self,
|
||||
task_id: str,
|
||||
input_rows: List[Dict[str, Any]],
|
||||
candidate: EvalCandidate,
|
||||
scoring_functions: List[str],
|
||||
task_config: EvalTaskConfig,
|
||||
) -> EvaluateResponse:
|
||||
candidate = task_config.eval_candidate
|
||||
if candidate.type == "agent":
|
||||
raise NotImplementedError(
|
||||
"Evaluation with generation has not been implemented for agents"
|
||||
|
@ -122,7 +139,10 @@ class MetaReferenceEvalImpl(Eval):
|
|||
}
|
||||
)
|
||||
elif ColumnName.chat_completion_input.value in x:
|
||||
input_messages = eval(str(x[ColumnName.chat_completion_input.value]))
|
||||
chat_completion_input_str = str(
|
||||
x[ColumnName.chat_completion_input.value]
|
||||
)
|
||||
input_messages = eval(chat_completion_input_str)
|
||||
input_messages = [UserMessage(**x) for x in input_messages]
|
||||
messages = []
|
||||
if candidate.system_message:
|
||||
|
@ -147,23 +167,33 @@ class MetaReferenceEvalImpl(Eval):
|
|||
for input_r, generated_r in zip(input_rows, generations)
|
||||
]
|
||||
|
||||
if task_config.type == "app" and task_config.scoring_params is not None:
|
||||
scoring_functions_dict = {
|
||||
scoring_fn_id: task_config.scoring_params.get(scoring_fn_id, None)
|
||||
for scoring_fn_id in scoring_functions
|
||||
}
|
||||
else:
|
||||
scoring_functions_dict = {
|
||||
scoring_fn_id: None for scoring_fn_id in scoring_functions
|
||||
}
|
||||
|
||||
score_response = await self.scoring_api.score(
|
||||
input_rows=score_input_rows, scoring_functions=scoring_functions
|
||||
input_rows=score_input_rows, scoring_functions=scoring_functions_dict
|
||||
)
|
||||
|
||||
return EvaluateResponse(generations=generations, scores=score_response.results)
|
||||
|
||||
async def job_status(self, job_id: str) -> Optional[JobStatus]:
|
||||
async def job_status(self, task_id: str, job_id: str) -> Optional[JobStatus]:
|
||||
if job_id in self.jobs:
|
||||
return JobStatus.completed
|
||||
|
||||
return None
|
||||
|
||||
async def job_cancel(self, job_id: str) -> None:
|
||||
async def job_cancel(self, task_id: str, job_id: str) -> None:
|
||||
raise NotImplementedError("Job cancel is not implemented yet")
|
||||
|
||||
async def job_result(self, job_id: str) -> EvaluateResponse:
|
||||
status = await self.job_status(job_id)
|
||||
async def job_result(self, task_id: str, job_id: str) -> EvaluateResponse:
|
||||
status = await self.job_status(task_id, job_id)
|
||||
if not status or status != JobStatus.completed:
|
||||
raise ValueError(f"Job is not completed, Status: {status.value}")
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue