feat(providers): sambanova safety provider (#2221)

# What does this PR do?

Includes SambaNova safety adaptor to use the sambanova cloud served
Meta-Llama-Guard-3-8B
minor updates in sambanova docs

## Test Plan
pytest -s -v tests/integration/safety/test_safety.py
--stack-config=sambanova --safety-shield=sambanova/Meta-Llama-Guard-3-8B
This commit is contained in:
Jorge Piedrahita Ortiz 2025-05-21 17:33:02 -05:00 committed by GitHub
parent 02e5e8a633
commit 633bb9c5b3
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
11 changed files with 222 additions and 22 deletions

View file

@ -63,4 +63,14 @@ def available_providers() -> list[ProviderSpec]:
config_class="llama_stack.providers.remote.safety.nvidia.NVIDIASafetyConfig",
),
),
remote_provider_spec(
api=Api.safety,
adapter=AdapterSpec(
adapter_type="sambanova",
pip_packages=["litellm"],
module="llama_stack.providers.remote.safety.sambanova",
config_class="llama_stack.providers.remote.safety.sambanova.SambaNovaSafetyConfig",
provider_data_validator="llama_stack.providers.remote.safety.sambanova.config.SambaNovaProviderDataValidator",
),
),
]

View file

@ -0,0 +1,18 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any
from .config import SambaNovaSafetyConfig
async def get_adapter_impl(config: SambaNovaSafetyConfig, _deps) -> Any:
from .sambanova import SambaNovaSafetyAdapter
impl = SambaNovaSafetyAdapter(config)
await impl.initialize()
return impl

View file

@ -0,0 +1,37 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any
from pydantic import BaseModel, Field, SecretStr
from llama_stack.schema_utils import json_schema_type
class SambaNovaProviderDataValidator(BaseModel):
sambanova_api_key: str | None = Field(
default=None,
description="Sambanova Cloud API key",
)
@json_schema_type
class SambaNovaSafetyConfig(BaseModel):
url: str = Field(
default="https://api.sambanova.ai/v1",
description="The URL for the SambaNova AI server",
)
api_key: SecretStr | None = Field(
default=None,
description="The SambaNova cloud API Key",
)
@classmethod
def sample_run_config(cls, api_key: str = "${env.SAMBANOVA_API_KEY}", **kwargs) -> dict[str, Any]:
return {
"url": "https://api.sambanova.ai/v1",
"api_key": api_key,
}

View file

@ -0,0 +1,100 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import json
import logging
from typing import Any
import litellm
import requests
from llama_stack.apis.inference import Message
from llama_stack.apis.safety import (
RunShieldResponse,
Safety,
SafetyViolation,
ViolationLevel,
)
from llama_stack.apis.shields import Shield
from llama_stack.distribution.request_headers import NeedsRequestProviderData
from llama_stack.providers.datatypes import ShieldsProtocolPrivate
from llama_stack.providers.utils.inference.openai_compat import convert_message_to_openai_dict_new
from .config import SambaNovaSafetyConfig
logger = logging.getLogger(__name__)
CANNED_RESPONSE_TEXT = "I can't answer that. Can I help with something else?"
class SambaNovaSafetyAdapter(Safety, ShieldsProtocolPrivate, NeedsRequestProviderData):
def __init__(self, config: SambaNovaSafetyConfig) -> None:
self.config = config
async def initialize(self) -> None:
pass
async def shutdown(self) -> None:
pass
def _get_api_key(self) -> str:
config_api_key = self.config.api_key if self.config.api_key else None
if config_api_key:
return config_api_key.get_secret_value()
else:
provider_data = self.get_request_provider_data()
if provider_data is None or not provider_data.sambanova_api_key:
raise ValueError(
'Pass Sambanova API Key in the header X-LlamaStack-Provider-Data as { "sambanova_api_key": <your api key> }'
)
return provider_data.sambanova_api_key
async def register_shield(self, shield: Shield) -> None:
list_models_url = self.config.url + "/models"
try:
response = requests.get(list_models_url)
response.raise_for_status()
except requests.exceptions.RequestException as e:
raise RuntimeError(f"Request to {list_models_url} failed") from e
available_models = [model.get("id") for model in response.json().get("data", {})]
if (
len(available_models) == 0
or "guard" not in shield.provider_resource_id.lower()
or shield.provider_resource_id.split("sambanova/")[-1] not in available_models
):
raise ValueError(f"Shield {shield.provider_resource_id} not found in SambaNova")
async def run_shield(
self, shield_id: str, messages: list[Message], params: dict[str, Any] | None = None
) -> RunShieldResponse:
shield = await self.shield_store.get_shield(shield_id)
if not shield:
raise ValueError(f"Shield {shield_id} not found")
shield_params = shield.params
logger.debug(f"run_shield::{shield_params}::messages={messages}")
content_messages = [await convert_message_to_openai_dict_new(m) for m in messages]
logger.debug(f"run_shield::final:messages::{json.dumps(content_messages, indent=2)}:")
response = litellm.completion(
model=shield.provider_resource_id, messages=content_messages, api_key=self._get_api_key()
)
shield_message = response.choices[0].message.content
if "unsafe" in shield_message.lower():
user_message = CANNED_RESPONSE_TEXT
violation_type = shield_message.split("\n")[-1]
metadata = {"violation_type": violation_type}
return RunShieldResponse(
violation=SafetyViolation(
user_message=user_message,
violation_level=ViolationLevel.ERROR,
metadata=metadata,
)
)
return RunShieldResponse()

View file

@ -1,6 +1,6 @@
version: '2'
distribution_spec:
description: Use SambaNova for running LLM inference
description: Use SambaNova for running LLM inference and safety
providers:
inference:
- remote::sambanova
@ -10,7 +10,7 @@ distribution_spec:
- remote::chromadb
- remote::pgvector
safety:
- inline::llama-guard
- remote::sambanova
agents:
- inline::meta-reference
telemetry:

View file

@ -37,33 +37,44 @@ The following models are available by default:
### Prerequisite: API Keys
Make sure you have access to a SambaNova API Key. You can get one by visiting [SambaNova.ai](https://sambanova.ai/).
Make sure you have access to a SambaNova API Key. You can get one by visiting [SambaNova.ai](http://cloud.sambanova.ai?utm_source=llamastack&utm_medium=external&utm_campaign=cloud_signup).
## Running Llama Stack with SambaNova
You can do this via Conda (build code) or Docker which has a pre-built image.
### Via Docker
This method allows you to get started quickly without having to build the distribution code.
### Via Docker
```bash
LLAMA_STACK_PORT=8321
llama stack build --template sambanova --image-type container
docker run \
-it \
--pull always \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
llamastack/distribution-{{ name }} \
-v ~/.llama:/root/.llama \
distribution-{{ name }} \
--port $LLAMA_STACK_PORT \
--env SAMBANOVA_API_KEY=$SAMBANOVA_API_KEY
```
### Via Venv
```bash
llama stack build --template sambanova --image-type venv
llama stack run --image-type venv ~/.llama/distributions/sambanova/sambanova-run.yaml \
--port $LLAMA_STACK_PORT \
--env SAMBANOVA_API_KEY=$SAMBANOVA_API_KEY
```
### Via Conda
```bash
llama stack build --template sambanova --image-type conda
llama stack run ./run.yaml \
llama stack run --image-type conda ~/.llama/distributions/sambanova/sambanova-run.yaml \
--port $LLAMA_STACK_PORT \
--env SAMBANOVA_API_KEY=$SAMBANOVA_API_KEY
```

View file

@ -38,10 +38,11 @@ providers:
user: ${env.PGVECTOR_USER:}
password: ${env.PGVECTOR_PASSWORD:}
safety:
- provider_id: llama-guard
provider_type: inline::llama-guard
- provider_id: sambanova
provider_type: remote::sambanova
config:
excluded_categories: []
url: https://api.sambanova.ai/v1
api_key: ${env.SAMBANOVA_API_KEY}
agents:
- provider_id: meta-reference
provider_type: inline::meta-reference
@ -189,6 +190,9 @@ models:
model_type: embedding
shields:
- shield_id: meta-llama/Llama-Guard-3-8B
provider_shield_id: sambanova/Meta-Llama-Guard-3-8B
- shield_id: sambanova/Meta-Llama-Guard-3-8B
provider_shield_id: sambanova/Meta-Llama-Guard-3-8B
vector_dbs: []
datasets: []
scoring_fns: []

View file

@ -34,7 +34,7 @@ def get_distribution_template() -> DistributionTemplate:
providers = {
"inference": ["remote::sambanova", "inline::sentence-transformers"],
"vector_io": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
"safety": ["inline::llama-guard"],
"safety": ["remote::sambanova"],
"agents": ["inline::meta-reference"],
"telemetry": ["inline::meta-reference"],
"tool_runtime": [
@ -110,7 +110,7 @@ def get_distribution_template() -> DistributionTemplate:
return DistributionTemplate(
name=name,
distro_type="self_hosted",
description="Use SambaNova for running LLM inference",
description="Use SambaNova for running LLM inference and safety",
container_image=None,
template_path=Path(__file__).parent / "doc_template.md",
providers=providers,
@ -122,7 +122,15 @@ def get_distribution_template() -> DistributionTemplate:
"vector_io": vector_io_providers,
},
default_models=default_models + [embedding_model],
default_shields=[ShieldInput(shield_id="meta-llama/Llama-Guard-3-8B")],
default_shields=[
ShieldInput(
shield_id="meta-llama/Llama-Guard-3-8B", provider_shield_id="sambanova/Meta-Llama-Guard-3-8B"
),
ShieldInput(
shield_id="sambanova/Meta-Llama-Guard-3-8B",
provider_shield_id="sambanova/Meta-Llama-Guard-3-8B",
),
],
default_tool_groups=default_tool_groups,
),
},