forked from phoenix-oss/llama-stack-mirror
precommit
This commit is contained in:
parent
5cf7779b8f
commit
63f1525165
2 changed files with 18 additions and 68 deletions
|
@ -14,7 +14,6 @@ from llama_stack.apis.datasetio import DatasetIO
|
|||
from llama_stack.apis.datasets import Datasets
|
||||
from llama_stack.apis.inference import Inference, SystemMessage, UserMessage
|
||||
from llama_stack.apis.scoring import Scoring
|
||||
from llama_stack.distribution.datatypes import Api
|
||||
from llama_stack.providers.datatypes import BenchmarksProtocolPrivate
|
||||
from llama_stack.providers.inline.agents.meta_reference.agent_instance import (
|
||||
MEMORY_QUERY_TOOL,
|
||||
|
@ -88,11 +87,7 @@ class MetaReferenceEvalImpl(
|
|||
# TODO: validate dataset schema
|
||||
all_rows = await self.datasetio_api.iterrows(
|
||||
dataset_id=dataset_id,
|
||||
limit=(
|
||||
-1
|
||||
if benchmark_config.num_examples is None
|
||||
else benchmark_config.num_examples
|
||||
),
|
||||
limit=(-1 if benchmark_config.num_examples is None else benchmark_config.num_examples),
|
||||
)
|
||||
res = await self.evaluate_rows(
|
||||
benchmark_id=benchmark_id,
|
||||
|
@ -118,14 +113,10 @@ class MetaReferenceEvalImpl(
|
|||
for i, x in tqdm(enumerate(input_rows)):
|
||||
assert ColumnName.chat_completion_input.value in x, "Invalid input row"
|
||||
input_messages = json.loads(x[ColumnName.chat_completion_input.value])
|
||||
input_messages = [
|
||||
UserMessage(**x) for x in input_messages if x["role"] == "user"
|
||||
]
|
||||
input_messages = [UserMessage(**x) for x in input_messages if x["role"] == "user"]
|
||||
|
||||
# NOTE: only single-turn agent generation is supported. Create a new session for each input row
|
||||
session_create_response = await self.agents_api.create_agent_session(
|
||||
agent_id, f"session-{i}"
|
||||
)
|
||||
session_create_response = await self.agents_api.create_agent_session(agent_id, f"session-{i}")
|
||||
session_id = session_create_response.session_id
|
||||
|
||||
turn_request = dict(
|
||||
|
@ -134,12 +125,7 @@ class MetaReferenceEvalImpl(
|
|||
messages=input_messages,
|
||||
stream=True,
|
||||
)
|
||||
turn_response = [
|
||||
chunk
|
||||
async for chunk in await self.agents_api.create_agent_turn(
|
||||
**turn_request
|
||||
)
|
||||
]
|
||||
turn_response = [chunk async for chunk in await self.agents_api.create_agent_turn(**turn_request)]
|
||||
final_event = turn_response[-1].event.payload
|
||||
|
||||
# check if there's a memory retrieval step and extract the context
|
||||
|
@ -148,14 +134,10 @@ class MetaReferenceEvalImpl(
|
|||
if step.step_type == StepType.tool_execution.value:
|
||||
for tool_response in step.tool_responses:
|
||||
if tool_response.tool_name == MEMORY_QUERY_TOOL:
|
||||
memory_rag_context = " ".join(
|
||||
x.text for x in tool_response.content
|
||||
)
|
||||
memory_rag_context = " ".join(x.text for x in tool_response.content)
|
||||
|
||||
agent_generation = {}
|
||||
agent_generation[ColumnName.generated_answer.value] = (
|
||||
final_event.turn.output_message.content
|
||||
)
|
||||
agent_generation[ColumnName.generated_answer.value] = final_event.turn.output_message.content
|
||||
if memory_rag_context:
|
||||
agent_generation[ColumnName.context.value] = memory_rag_context
|
||||
|
||||
|
@ -167,9 +149,7 @@ class MetaReferenceEvalImpl(
|
|||
self, input_rows: List[Dict[str, Any]], benchmark_config: BenchmarkConfig
|
||||
) -> List[Dict[str, Any]]:
|
||||
candidate = benchmark_config.eval_candidate
|
||||
assert (
|
||||
candidate.sampling_params.max_tokens is not None
|
||||
), "SamplingParams.max_tokens must be provided"
|
||||
assert candidate.sampling_params.max_tokens is not None, "SamplingParams.max_tokens must be provided"
|
||||
|
||||
generations = []
|
||||
for x in tqdm(input_rows):
|
||||
|
@ -180,39 +160,21 @@ class MetaReferenceEvalImpl(
|
|||
content=input_content,
|
||||
sampling_params=candidate.sampling_params,
|
||||
)
|
||||
generations.append(
|
||||
{
|
||||
ColumnName.generated_answer.value: response.completion_message.content
|
||||
}
|
||||
)
|
||||
generations.append({ColumnName.generated_answer.value: response.completion_message.content})
|
||||
elif ColumnName.chat_completion_input.value in x:
|
||||
chat_completion_input_json = json.loads(
|
||||
x[ColumnName.chat_completion_input.value]
|
||||
)
|
||||
input_messages = [
|
||||
UserMessage(**x)
|
||||
for x in chat_completion_input_json
|
||||
if x["role"] == "user"
|
||||
]
|
||||
chat_completion_input_json = json.loads(x[ColumnName.chat_completion_input.value])
|
||||
input_messages = [UserMessage(**x) for x in chat_completion_input_json if x["role"] == "user"]
|
||||
messages = []
|
||||
if candidate.system_message:
|
||||
messages.append(candidate.system_message)
|
||||
messages += [
|
||||
SystemMessage(**x)
|
||||
for x in chat_completion_input_json
|
||||
if x["role"] == "system"
|
||||
]
|
||||
messages += [SystemMessage(**x) for x in chat_completion_input_json if x["role"] == "system"]
|
||||
messages += input_messages
|
||||
response = await self.inference_api.chat_completion(
|
||||
model_id=candidate.model,
|
||||
messages=messages,
|
||||
sampling_params=candidate.sampling_params,
|
||||
)
|
||||
generations.append(
|
||||
{
|
||||
ColumnName.generated_answer.value: response.completion_message.content
|
||||
}
|
||||
)
|
||||
generations.append({ColumnName.generated_answer.value: response.completion_message.content})
|
||||
else:
|
||||
raise ValueError("Invalid input row")
|
||||
|
||||
|
@ -235,8 +197,7 @@ class MetaReferenceEvalImpl(
|
|||
|
||||
# scoring with generated_answer
|
||||
score_input_rows = [
|
||||
input_r | generated_r
|
||||
for input_r, generated_r in zip(input_rows, generations, strict=False)
|
||||
input_r | generated_r for input_r, generated_r in zip(input_rows, generations, strict=False)
|
||||
]
|
||||
|
||||
if benchmark_config.scoring_params is not None:
|
||||
|
@ -245,9 +206,7 @@ class MetaReferenceEvalImpl(
|
|||
for scoring_fn_id in scoring_functions
|
||||
}
|
||||
else:
|
||||
scoring_functions_dict = {
|
||||
scoring_fn_id: None for scoring_fn_id in scoring_functions
|
||||
}
|
||||
scoring_functions_dict = {scoring_fn_id: None for scoring_fn_id in scoring_functions}
|
||||
|
||||
score_response = await self.scoring_api.score(
|
||||
input_rows=score_input_rows, scoring_functions=scoring_functions_dict
|
||||
|
|
|
@ -3,7 +3,6 @@
|
|||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
import os
|
||||
import uuid
|
||||
from pathlib import Path
|
||||
|
||||
|
@ -22,9 +21,7 @@ def test_evaluate_rows(llama_stack_client, text_model_id, scoring_fn_id):
|
|||
purpose="eval/messages-answer",
|
||||
source={
|
||||
"type": "uri",
|
||||
"uri": data_url_from_file(
|
||||
Path(__file__).parent.parent / "datasets" / "test_dataset.csv"
|
||||
),
|
||||
"uri": data_url_from_file(Path(__file__).parent.parent / "datasets" / "test_dataset.csv"),
|
||||
},
|
||||
)
|
||||
response = llama_stack_client.datasets.list()
|
||||
|
@ -73,9 +70,7 @@ def test_evaluate_benchmark(llama_stack_client, text_model_id, scoring_fn_id):
|
|||
purpose="eval/messages-answer",
|
||||
source={
|
||||
"type": "uri",
|
||||
"uri": data_url_from_file(
|
||||
Path(__file__).parent.parent / "datasets" / "test_dataset.csv"
|
||||
),
|
||||
"uri": data_url_from_file(Path(__file__).parent.parent / "datasets" / "test_dataset.csv"),
|
||||
},
|
||||
)
|
||||
benchmark_id = str(uuid.uuid4())
|
||||
|
@ -98,14 +93,10 @@ def test_evaluate_benchmark(llama_stack_client, text_model_id, scoring_fn_id):
|
|||
},
|
||||
)
|
||||
assert response.job_id == "0"
|
||||
job_status = llama_stack_client.eval.jobs.status(
|
||||
job_id=response.job_id, benchmark_id=benchmark_id
|
||||
)
|
||||
job_status = llama_stack_client.eval.jobs.status(job_id=response.job_id, benchmark_id=benchmark_id)
|
||||
assert job_status and job_status == "completed"
|
||||
|
||||
eval_response = llama_stack_client.eval.jobs.retrieve(
|
||||
job_id=response.job_id, benchmark_id=benchmark_id
|
||||
)
|
||||
eval_response = llama_stack_client.eval.jobs.retrieve(job_id=response.job_id, benchmark_id=benchmark_id)
|
||||
assert eval_response is not None
|
||||
assert len(eval_response.generations) == 5
|
||||
assert scoring_fn_id in eval_response.scores
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue