fix: Updating ToolCall.arguments to allow for json strings that can be decoded on client side (#1685)

### What does this PR do?

Currently, `ToolCall.arguments` is a `Dict[str, RecursiveType]`.
However, on the client SDK side -- the `RecursiveType` gets deserialized
into a number ( both int and float get collapsed ) and hence when params
are `int` they get converted to float which might break client side
tools that might be doing type checking.

Closes: https://github.com/meta-llama/llama-stack/issues/1683

### Test Plan
Stainless changes --
https://github.com/meta-llama/llama-stack-client-python/pull/204
```
pytest -s -v --stack-config=fireworks tests/integration/agents/test_agents.py  --text-model meta-llama/Llama-3.1-8B-Instruct
```
This commit is contained in:
Hardik Shah 2025-03-19 10:36:19 -07:00 committed by GitHub
parent 113f3a259c
commit 65ca85ba6b
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
10 changed files with 137 additions and 110 deletions

View file

@ -4159,70 +4159,80 @@
]
},
"arguments": {
"type": "object",
"additionalProperties": {
"oneOf": [
{
"type": "string"
},
{
"type": "integer"
},
{
"type": "number"
},
{
"type": "boolean"
},
{
"type": "null"
},
{
"type": "array",
"items": {
"oneOf": [
{
"type": "string"
},
{
"type": "integer"
},
{
"type": "number"
},
{
"type": "boolean"
},
{
"type": "null"
"oneOf": [
{
"type": "string"
},
{
"type": "object",
"additionalProperties": {
"oneOf": [
{
"type": "string"
},
{
"type": "integer"
},
{
"type": "number"
},
{
"type": "boolean"
},
{
"type": "null"
},
{
"type": "array",
"items": {
"oneOf": [
{
"type": "string"
},
{
"type": "integer"
},
{
"type": "number"
},
{
"type": "boolean"
},
{
"type": "null"
}
]
}
]
}
},
{
"type": "object",
"additionalProperties": {
"oneOf": [
{
"type": "string"
},
{
"type": "integer"
},
{
"type": "number"
},
{
"type": "boolean"
},
{
"type": "null"
},
{
"type": "object",
"additionalProperties": {
"oneOf": [
{
"type": "string"
},
{
"type": "integer"
},
{
"type": "number"
},
{
"type": "boolean"
},
{
"type": "null"
}
]
}
]
}
}
]
}
]
}
}
]
},
"arguments_json": {
"type": "string"
}
},
"additionalProperties": false,

View file

@ -2864,30 +2864,34 @@ components:
title: BuiltinTool
- type: string
arguments:
type: object
additionalProperties:
oneOf:
- type: string
- type: integer
- type: number
- type: boolean
- type: 'null'
- type: array
items:
oneOf:
- type: string
- type: integer
- type: number
- type: boolean
- type: 'null'
- type: object
additionalProperties:
oneOf:
- type: string
- type: integer
- type: number
- type: boolean
- type: 'null'
oneOf:
- type: string
- type: object
additionalProperties:
oneOf:
- type: string
- type: integer
- type: number
- type: boolean
- type: 'null'
- type: array
items:
oneOf:
- type: string
- type: integer
- type: number
- type: boolean
- type: 'null'
- type: object
additionalProperties:
oneOf:
- type: string
- type: integer
- type: number
- type: boolean
- type: 'null'
arguments_json:
type: string
additionalProperties: false
required:
- call_id

View file

@ -47,7 +47,14 @@ RecursiveType = Union[Primitive, List[Primitive], Dict[str, Primitive]]
class ToolCall(BaseModel):
call_id: str
tool_name: Union[BuiltinTool, str]
arguments: Dict[str, RecursiveType]
# Plan is to deprecate the Dict in favor of a JSON string
# that is parsed on the client side instead of trying to manage
# the recursive type here.
# Making this a union so that client side can start prepping for this change.
# Eventually, we will remove both the Dict and arguments_json field,
# and arguments will just be a str
arguments: Union[str, Dict[str, RecursiveType]]
arguments_json: Optional[str] = None
@field_validator("tool_name", mode="before")
@classmethod

View file

@ -12,6 +12,7 @@
# the top-level of this source tree.
import io
import json
import uuid
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple
@ -203,9 +204,10 @@ class ChatFormat:
# This code tries to handle that case
if tool_name in BuiltinTool.__members__:
tool_name = BuiltinTool[tool_name]
tool_arguments = {
"query": list(tool_arguments.values())[0],
}
if isinstance(tool_arguments, dict):
tool_arguments = {
"query": list(tool_arguments.values())[0],
}
else:
builtin_tool_info = ToolUtils.maybe_extract_builtin_tool_call(content)
if builtin_tool_info is not None:
@ -229,6 +231,7 @@ class ChatFormat:
call_id=call_id,
tool_name=tool_name,
arguments=tool_arguments,
arguments_json=json.dumps(tool_arguments),
)
)
content = ""

View file

@ -11,11 +11,8 @@
# top-level folder for each specific model found within the models/ directory at
# the top-level of this source tree.
from llama_stack.models.llama.datatypes import (
BuiltinTool,
StopReason,
ToolCall,
)
from llama_stack.models.llama.datatypes import BuiltinTool, StopReason, ToolCall
from .prompt_templates import (
BuiltinToolGenerator,

View file

@ -582,6 +582,7 @@ class VLLMInferenceImpl(Inference, ModelsProtocolPrivate):
tool_name=t.function.name,
# vLLM function args come back as a string. Llama Stack expects JSON.
arguments=json.loads(t.function.arguments),
arguments_json=t.function.arguments,
)
for t in vllm_message.tool_calls
],

View file

@ -42,9 +42,7 @@ from llama_stack.models.llama.datatypes import (
TopKSamplingStrategy,
TopPSamplingStrategy,
)
from llama_stack.providers.utils.inference.model_registry import (
ModelRegistryHelper,
)
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
from llama_stack.providers.utils.inference.openai_compat import (
process_chat_completion_stream_response,
)
@ -293,14 +291,12 @@ class SambaNovaInferenceAdapter(ModelRegistryHelper, Inference):
if not tool_calls:
return []
for call in tool_calls:
call_function_arguments = json.loads(call.function.arguments)
compitable_tool_calls = [
ToolCall(
call_id=call.id,
tool_name=call.function.name,
arguments=call_function_arguments,
arguments=json.loads(call.function.arguments),
arguments_json=call.function.arguments,
)
for call in tool_calls
]

View file

@ -90,15 +90,12 @@ def _convert_to_vllm_tool_calls_in_response(
if not tool_calls:
return []
call_function_arguments = None
for call in tool_calls:
call_function_arguments = json.loads(call.function.arguments)
return [
ToolCall(
call_id=call.id,
tool_name=call.function.name,
arguments=call_function_arguments,
arguments=json.loads(call.function.arguments),
arguments_json=call.function.arguments,
)
for call in tool_calls
]
@ -183,6 +180,7 @@ async def _process_vllm_chat_completion_stream_response(
call_id=tool_call_buf.call_id,
tool_name=tool_call_buf.tool_name,
arguments=args,
arguments_json=args_str,
),
parse_status=ToolCallParseStatus.succeeded,
),

View file

@ -529,7 +529,11 @@ async def convert_message_to_openai_dict_new(
) -> Union[str, Iterable[OpenAIChatCompletionContentPartParam]]:
async def impl(
content_: InterleavedContent,
) -> Union[str, OpenAIChatCompletionContentPartParam, List[OpenAIChatCompletionContentPartParam]]:
) -> Union[
str,
OpenAIChatCompletionContentPartParam,
List[OpenAIChatCompletionContentPartParam],
]:
# Llama Stack and OpenAI spec match for str and text input
if isinstance(content_, str):
return content_
@ -570,7 +574,7 @@ async def convert_message_to_openai_dict_new(
OpenAIChatCompletionMessageToolCall(
id=tool.call_id,
function=OpenAIFunction(
name=tool.tool_name if not isinstance(tool.tool_name, BuiltinTool) else tool.tool_name.value,
name=(tool.tool_name if not isinstance(tool.tool_name, BuiltinTool) else tool.tool_name.value),
arguments=json.dumps(tool.arguments),
),
type="function",
@ -609,6 +613,7 @@ def convert_tool_call(
call_id=tool_call.id,
tool_name=tool_call.function.name,
arguments=json.loads(tool_call.function.arguments),
arguments_json=tool_call.function.arguments,
)
except Exception:
return UnparseableToolCall(
@ -759,6 +764,7 @@ def _convert_openai_tool_calls(
call_id=call.id,
tool_name=call.function.name,
arguments=json.loads(call.function.arguments),
arguments_json=call.function.arguments,
)
for call in tool_calls
]
@ -890,7 +896,8 @@ async def convert_openai_chat_completion_stream(
# ChatCompletionResponseEvent only supports one per stream
if len(choice.delta.tool_calls) > 1:
warnings.warn(
"multiple tool calls found in a single delta, using the first, ignoring the rest", stacklevel=2
"multiple tool calls found in a single delta, using the first, ignoring the rest",
stacklevel=2,
)
if not enable_incremental_tool_calls:
@ -971,6 +978,7 @@ async def convert_openai_chat_completion_stream(
call_id=buffer["call_id"],
tool_name=buffer["name"],
arguments=arguments,
arguments_json=buffer["arguments"],
)
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(

View file

@ -165,7 +165,10 @@ class PrepareMessagesTests(unittest.IsolatedAsyncioTestCase):
request.model = MODEL
request.tool_config.tool_prompt_format = ToolPromptFormat.json
prompt = await chat_completion_request_to_prompt(request, request.model)
self.assertIn('{"type": "function", "name": "custom1", "parameters": {"param1": "value1"}}', prompt)
self.assertIn(
'{"type": "function", "name": "custom1", "parameters": {"param1": "value1"}}',
prompt,
)
async def test_user_provided_system_message(self):
content = "Hello !"