forked from phoenix-oss/llama-stack-mirror
chore: more mypy checks (ollama, vllm, ...) (#1777)
# What does this PR do? - **chore: mypy for strong_typing** - **chore: mypy for remote::vllm** - **chore: mypy for remote::ollama** - **chore: mypy for providers.datatype** --------- Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
This commit is contained in:
parent
d5e0f32485
commit
66d6c2580e
15 changed files with 103 additions and 72 deletions
|
@ -5,7 +5,7 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
|
||||
from typing import AsyncGenerator, List, Optional, Union
|
||||
from typing import Any, AsyncGenerator, List, Optional, Union
|
||||
|
||||
import httpx
|
||||
from ollama import AsyncClient
|
||||
|
@ -19,10 +19,15 @@ from llama_stack.apis.common.content_types import (
|
|||
from llama_stack.apis.inference import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
ChatCompletionResponseStreamChunk,
|
||||
CompletionRequest,
|
||||
CompletionResponse,
|
||||
CompletionResponseStreamChunk,
|
||||
EmbeddingsResponse,
|
||||
EmbeddingTaskType,
|
||||
GrammarResponseFormat,
|
||||
Inference,
|
||||
JsonSchemaResponseFormat,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
ResponseFormat,
|
||||
|
@ -86,6 +91,11 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
async def unregister_model(self, model_id: str) -> None:
|
||||
pass
|
||||
|
||||
async def _get_model(self, model_id: str) -> Model:
|
||||
if not self.model_store:
|
||||
raise ValueError("Model store not set")
|
||||
return await self.model_store.get_model(model_id)
|
||||
|
||||
async def completion(
|
||||
self,
|
||||
model_id: str,
|
||||
|
@ -94,10 +104,10 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
response_format: Optional[ResponseFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> AsyncGenerator:
|
||||
) -> CompletionResponse | AsyncGenerator[CompletionResponseStreamChunk, None]:
|
||||
if sampling_params is None:
|
||||
sampling_params = SamplingParams()
|
||||
model = await self.model_store.get_model(model_id)
|
||||
model = await self._get_model(model_id)
|
||||
request = CompletionRequest(
|
||||
model=model.provider_resource_id,
|
||||
content=content,
|
||||
|
@ -111,7 +121,9 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
else:
|
||||
return await self._nonstream_completion(request)
|
||||
|
||||
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
|
||||
async def _stream_completion(
|
||||
self, request: CompletionRequest
|
||||
) -> AsyncGenerator[CompletionResponseStreamChunk, None]:
|
||||
params = await self._get_params(request)
|
||||
|
||||
async def _generate_and_convert_to_openai_compat():
|
||||
|
@ -129,7 +141,7 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
async for chunk in process_completion_stream_response(stream):
|
||||
yield chunk
|
||||
|
||||
async def _nonstream_completion(self, request: CompletionRequest) -> AsyncGenerator:
|
||||
async def _nonstream_completion(self, request: CompletionRequest) -> CompletionResponse:
|
||||
params = await self._get_params(request)
|
||||
r = await self.client.generate(**params)
|
||||
|
||||
|
@ -148,17 +160,17 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
model_id: str,
|
||||
messages: List[Message],
|
||||
sampling_params: Optional[SamplingParams] = None,
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
tools: Optional[List[ToolDefinition]] = None,
|
||||
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
||||
tool_prompt_format: Optional[ToolPromptFormat] = None,
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
tool_config: Optional[ToolConfig] = None,
|
||||
) -> AsyncGenerator:
|
||||
) -> ChatCompletionResponse | AsyncGenerator[ChatCompletionResponseStreamChunk, None]:
|
||||
if sampling_params is None:
|
||||
sampling_params = SamplingParams()
|
||||
model = await self.model_store.get_model(model_id)
|
||||
model = await self._get_model(model_id)
|
||||
request = ChatCompletionRequest(
|
||||
model=model.provider_resource_id,
|
||||
messages=messages,
|
||||
|
@ -181,7 +193,7 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
if sampling_options.get("max_tokens") is not None:
|
||||
sampling_options["num_predict"] = sampling_options["max_tokens"]
|
||||
|
||||
input_dict = {}
|
||||
input_dict: dict[str, Any] = {}
|
||||
media_present = request_has_media(request)
|
||||
llama_model = self.register_helper.get_llama_model(request.model)
|
||||
if isinstance(request, ChatCompletionRequest):
|
||||
|
@ -201,9 +213,9 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
input_dict["raw"] = True
|
||||
|
||||
if fmt := request.response_format:
|
||||
if fmt.type == "json_schema":
|
||||
if isinstance(fmt, JsonSchemaResponseFormat):
|
||||
input_dict["format"] = fmt.json_schema
|
||||
elif fmt.type == "grammar":
|
||||
elif isinstance(fmt, GrammarResponseFormat):
|
||||
raise NotImplementedError("Grammar response format is not supported")
|
||||
else:
|
||||
raise ValueError(f"Unknown response format type: {fmt.type}")
|
||||
|
@ -240,7 +252,9 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
)
|
||||
return process_chat_completion_response(response, request)
|
||||
|
||||
async def _stream_chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator:
|
||||
async def _stream_chat_completion(
|
||||
self, request: ChatCompletionRequest
|
||||
) -> AsyncGenerator[ChatCompletionResponseStreamChunk, None]:
|
||||
params = await self._get_params(request)
|
||||
|
||||
async def _generate_and_convert_to_openai_compat():
|
||||
|
@ -275,7 +289,7 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
output_dimension: Optional[int] = None,
|
||||
task_type: Optional[EmbeddingTaskType] = None,
|
||||
) -> EmbeddingsResponse:
|
||||
model = await self.model_store.get_model(model_id)
|
||||
model = await self._get_model(model_id)
|
||||
|
||||
assert all(not content_has_media(content) for content in contents), (
|
||||
"Ollama does not support media for embeddings"
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue