Remove "routing_table" and "routing_key" concepts for the user (#201)

This PR makes several core changes to the developer experience surrounding Llama Stack.

Background: PR #92 introduced the notion of "routing" to the Llama Stack. It introduces three object types: (1) models, (2) shields and (3) memory banks. Each of these objects can be associated with a distinct provider. So you can get model A to be inferenced locally while model B, C can be inference remotely (e.g.)

However, this had a few drawbacks:

you could not address the provider instances -- i.e., if you configured "meta-reference" with a given model, you could not assign an identifier to this instance which you could re-use later.
the above meant that you could not register a "routing_key" (e.g. model) dynamically and say "please use this existing provider I have already configured" for a new model.
the terms "routing_table" and "routing_key" were exposed directly to the user. in my view, this is way too much overhead for a new user (which almost everyone is.) people come to the stack wanting to do ML and encounter a completely unexpected term.
What this PR does: This PR structures the run config with only a single prominent key:

- providers
Providers are instances of configured provider types. Here's an example which shows two instances of the remote::tgi provider which are serving two different models.

providers:
  inference:
  - provider_id: foo
    provider_type: remote::tgi
    config: { ... }
  - provider_id: bar
    provider_type: remote::tgi
    config: { ... }
Secondly, the PR adds dynamic registration of { models | shields | memory_banks } to the API surface. The distribution still acts like a "routing table" (as previously) except that it asks the backing providers for a listing of these objects. For example it asks a TGI or Ollama inference adapter what models it is serving. Only the models that are being actually served can be requested by the user for inference. Otherwise, the Stack server will throw an error.

When dynamically registering these objects, you can use the provider IDs shown above. Info about providers can be obtained using the Api.inspect set of endpoints (/providers, /routes, etc.)

The above examples shows the correspondence between inference providers and models registry items. Things work similarly for the safety <=> shields and memory <=> memory_banks pairs.

Registry: This PR also makes it so that Providers need to implement additional methods for registering and listing objects. For example, each Inference provider is now expected to implement the ModelsProtocolPrivate protocol (naming is not great!) which consists of two methods

register_model
list_models
The goal is to inform the provider that a certain model needs to be supported so the provider can make any relevant backend changes if needed (or throw an error if the model cannot be supported.)

There are many other cleanups included some of which are detailed in a follow-up comment.
This commit is contained in:
Ashwin Bharambe 2024-10-10 10:24:13 -07:00 committed by GitHub
parent 8c3010553f
commit 6bb57e72a7
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
93 changed files with 4697 additions and 4457 deletions

View file

@ -3,189 +3,182 @@
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import textwrap
from typing import Any
from llama_models.sku_list import (
llama3_1_family,
llama3_2_family,
llama3_family,
resolve_model,
safety_models,
)
from pydantic import BaseModel
from llama_stack.distribution.datatypes import * # noqa: F403
from prompt_toolkit import prompt
from prompt_toolkit.validation import Validator
from termcolor import cprint
from llama_stack.apis.memory.memory import MemoryBankType
from llama_stack.distribution.distribution import (
builtin_automatically_routed_apis,
get_provider_registry,
stack_apis,
)
from llama_stack.distribution.utils.dynamic import instantiate_class_type
from llama_stack.distribution.utils.prompt_for_config import prompt_for_config
from llama_stack.providers.impls.meta_reference.safety.config import (
MetaReferenceShieldType,
)
ALLOWED_MODELS = (
llama3_family() + llama3_1_family() + llama3_2_family() + safety_models()
)
from llama_stack.apis.models import * # noqa: F403
from llama_stack.apis.shields import * # noqa: F403
from llama_stack.apis.memory_banks import * # noqa: F403
def make_routing_entry_type(config_class: Any):
class BaseModelWithConfig(BaseModel):
routing_key: str
config: config_class
def configure_single_provider(
registry: Dict[str, ProviderSpec], provider: Provider
) -> Provider:
provider_spec = registry[provider.provider_type]
config_type = instantiate_class_type(provider_spec.config_class)
try:
if provider.config:
existing = config_type(**provider.config)
else:
existing = None
except Exception:
existing = None
return BaseModelWithConfig
cfg = prompt_for_config(config_type, existing)
return Provider(
provider_id=provider.provider_id,
provider_type=provider.provider_type,
config=cfg.dict(),
)
def get_builtin_apis(provider_backed_apis: List[str]) -> List[str]:
"""Get corresponding builtin APIs given provider backed APIs"""
res = []
for inf in builtin_automatically_routed_apis():
if inf.router_api.value in provider_backed_apis:
res.append(inf.routing_table_api.value)
return res
# TODO: make sure we can deal with existing configuration values correctly
# instead of just overwriting them
def configure_api_providers(
config: StackRunConfig, spec: DistributionSpec
config: StackRunConfig, build_spec: DistributionSpec
) -> StackRunConfig:
apis = config.apis_to_serve or list(spec.providers.keys())
# append the bulitin routing APIs
apis += get_builtin_apis(apis)
is_nux = len(config.providers) == 0
router_api2builtin_api = {
inf.router_api.value: inf.routing_table_api.value
for inf in builtin_automatically_routed_apis()
}
if is_nux:
print(
textwrap.dedent(
"""
Llama Stack is composed of several APIs working together. For each API served by the Stack,
we need to configure the providers (implementations) you want to use for these APIs.
"""
)
)
config.apis_to_serve = list(set([a for a in apis if a != "telemetry"]))
provider_registry = get_provider_registry()
builtin_apis = [a.routing_table_api for a in builtin_automatically_routed_apis()]
apis = [v.value for v in stack_apis()]
all_providers = get_provider_registry()
if config.apis:
apis_to_serve = config.apis
else:
apis_to_serve = [a.value for a in Api if a not in (Api.telemetry, Api.inspect)]
# configure simple case for with non-routing providers to api_providers
for api_str in spec.providers.keys():
if api_str not in apis:
for api_str in apis_to_serve:
api = Api(api_str)
if api in builtin_apis:
continue
if api not in provider_registry:
raise ValueError(f"Unknown API `{api_str}`")
cprint(f"Configuring API `{api_str}`...", "green", attrs=["bold"])
api = Api(api_str)
p = spec.providers[api_str]
cprint(f"=== Configuring provider `{p}` for API {api_str}...", "green")
if isinstance(p, list):
existing_providers = config.providers.get(api_str, [])
if existing_providers:
cprint(
f"[WARN] Interactive configuration of multiple providers {p} is not supported, configuring {p[0]} only, please manually configure {p[1:]} in routing_table of run.yaml",
"yellow",
f"Re-configuring existing providers for API `{api_str}`...",
"green",
attrs=["bold"],
)
p = p[0]
provider_spec = all_providers[api][p]
config_type = instantiate_class_type(provider_spec.config_class)
try:
provider_config = config.api_providers.get(api_str)
if provider_config:
existing = config_type(**provider_config.config)
else:
existing = None
except Exception:
existing = None
cfg = prompt_for_config(config_type, existing)
if api_str in router_api2builtin_api:
# a routing api, we need to infer and assign it a routing_key and put it in the routing_table
routing_key = "<PLEASE_FILL_ROUTING_KEY>"
routing_entries = []
if api_str == "inference":
if hasattr(cfg, "model"):
routing_key = cfg.model
else:
routing_key = prompt(
"> Please enter the supported model your provider has for inference: ",
default="Llama3.1-8B-Instruct",
validator=Validator.from_callable(
lambda x: resolve_model(x) is not None,
error_message="Model must be: {}".format(
[x.descriptor() for x in ALLOWED_MODELS]
),
),
)
routing_entries.append(
RoutableProviderConfig(
routing_key=routing_key,
provider_type=p,
config=cfg.dict(),
)
updated_providers = []
for p in existing_providers:
print(f"> Configuring provider `({p.provider_type})`")
updated_providers.append(
configure_single_provider(provider_registry[api], p)
)
if api_str == "safety":
# TODO: add support for other safety providers, and simplify safety provider config
if p == "meta-reference":
routing_entries.append(
RoutableProviderConfig(
routing_key=[s.value for s in MetaReferenceShieldType],
provider_type=p,
config=cfg.dict(),
)
)
else:
cprint(
f"[WARN] Interactive configuration of safety provider {p} is not supported. Please look for `{routing_key}` in run.yaml and replace it appropriately.",
"yellow",
attrs=["bold"],
)
routing_entries.append(
RoutableProviderConfig(
routing_key=routing_key,
provider_type=p,
config=cfg.dict(),
)
)
if api_str == "memory":
bank_types = list([x.value for x in MemoryBankType])
routing_key = prompt(
"> Please enter the supported memory bank type your provider has for memory: ",
default="vector",
validator=Validator.from_callable(
lambda x: x in bank_types,
error_message="Invalid provider, please enter one of the following: {}".format(
bank_types
),
),
)
routing_entries.append(
RoutableProviderConfig(
routing_key=routing_key,
provider_type=p,
config=cfg.dict(),
)
)
config.routing_table[api_str] = routing_entries
config.api_providers[api_str] = PlaceholderProviderConfig(
providers=p if isinstance(p, list) else [p]
)
print("")
else:
config.api_providers[api_str] = GenericProviderConfig(
provider_type=p,
config=cfg.dict(),
)
# we are newly configuring this API
plist = build_spec.providers.get(api_str, [])
plist = plist if isinstance(plist, list) else [plist]
print("")
if not plist:
raise ValueError(f"No provider configured for API {api_str}?")
cprint(f"Configuring API `{api_str}`...", "green", attrs=["bold"])
updated_providers = []
for i, provider_type in enumerate(plist):
print(f"> Configuring provider `({provider_type})`")
updated_providers.append(
configure_single_provider(
provider_registry[api],
Provider(
provider_id=(
f"{provider_type}-{i:02d}"
if len(plist) > 1
else provider_type
),
provider_type=provider_type,
config={},
),
)
)
print("")
config.providers[api_str] = updated_providers
return config
def upgrade_from_routing_table(
config_dict: Dict[str, Any],
) -> Dict[str, Any]:
def get_providers(entries):
return [
Provider(
provider_id=(
f"{entry['provider_type']}-{i:02d}"
if len(entries) > 1
else entry["provider_type"]
),
provider_type=entry["provider_type"],
config=entry["config"],
)
for i, entry in enumerate(entries)
]
providers_by_api = {}
routing_table = config_dict.get("routing_table", {})
for api_str, entries in routing_table.items():
providers = get_providers(entries)
providers_by_api[api_str] = providers
provider_map = config_dict.get("api_providers", config_dict.get("provider_map", {}))
if provider_map:
for api_str, provider in provider_map.items():
if isinstance(provider, dict) and "provider_type" in provider:
providers_by_api[api_str] = [
Provider(
provider_id=f"{provider['provider_type']}",
provider_type=provider["provider_type"],
config=provider["config"],
)
]
config_dict["providers"] = providers_by_api
config_dict.pop("routing_table", None)
config_dict.pop("api_providers", None)
config_dict.pop("provider_map", None)
config_dict["apis"] = config_dict["apis_to_serve"]
config_dict.pop("apis_to_serve", None)
return config_dict
def parse_and_maybe_upgrade_config(config_dict: Dict[str, Any]) -> StackRunConfig:
version = config_dict.get("version", None)
if version == LLAMA_STACK_RUN_CONFIG_VERSION:
return StackRunConfig(**config_dict)
if "routing_table" in config_dict:
print("Upgrading config...")
config_dict = upgrade_from_routing_table(config_dict)
config_dict["version"] = LLAMA_STACK_RUN_CONFIG_VERSION
config_dict["built_at"] = datetime.now().isoformat()
return StackRunConfig(**config_dict)