Remove "routing_table" and "routing_key" concepts for the user (#201)

This PR makes several core changes to the developer experience surrounding Llama Stack.

Background: PR #92 introduced the notion of "routing" to the Llama Stack. It introduces three object types: (1) models, (2) shields and (3) memory banks. Each of these objects can be associated with a distinct provider. So you can get model A to be inferenced locally while model B, C can be inference remotely (e.g.)

However, this had a few drawbacks:

you could not address the provider instances -- i.e., if you configured "meta-reference" with a given model, you could not assign an identifier to this instance which you could re-use later.
the above meant that you could not register a "routing_key" (e.g. model) dynamically and say "please use this existing provider I have already configured" for a new model.
the terms "routing_table" and "routing_key" were exposed directly to the user. in my view, this is way too much overhead for a new user (which almost everyone is.) people come to the stack wanting to do ML and encounter a completely unexpected term.
What this PR does: This PR structures the run config with only a single prominent key:

- providers
Providers are instances of configured provider types. Here's an example which shows two instances of the remote::tgi provider which are serving two different models.

providers:
  inference:
  - provider_id: foo
    provider_type: remote::tgi
    config: { ... }
  - provider_id: bar
    provider_type: remote::tgi
    config: { ... }
Secondly, the PR adds dynamic registration of { models | shields | memory_banks } to the API surface. The distribution still acts like a "routing table" (as previously) except that it asks the backing providers for a listing of these objects. For example it asks a TGI or Ollama inference adapter what models it is serving. Only the models that are being actually served can be requested by the user for inference. Otherwise, the Stack server will throw an error.

When dynamically registering these objects, you can use the provider IDs shown above. Info about providers can be obtained using the Api.inspect set of endpoints (/providers, /routes, etc.)

The above examples shows the correspondence between inference providers and models registry items. Things work similarly for the safety <=> shields and memory <=> memory_banks pairs.

Registry: This PR also makes it so that Providers need to implement additional methods for registering and listing objects. For example, each Inference provider is now expected to implement the ModelsProtocolPrivate protocol (naming is not great!) which consists of two methods

register_model
list_models
The goal is to inform the provider that a certain model needs to be supported so the provider can make any relevant backend changes if needed (or throw an error if the model cannot be supported.)

There are many other cleanups included some of which are detailed in a follow-up comment.
This commit is contained in:
Ashwin Bharambe 2024-10-10 10:24:13 -07:00 committed by GitHub
parent 8c3010553f
commit 6bb57e72a7
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
93 changed files with 4697 additions and 4457 deletions

View file

@ -1,445 +1,451 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import * # noqa: F403
import boto3
from botocore.client import BaseClient
from botocore.config import Config
from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.tokenizer import Tokenizer
from llama_stack.providers.utils.inference.routable import RoutableProviderForModels
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.providers.adapters.inference.bedrock.config import BedrockConfig
BEDROCK_SUPPORTED_MODELS = {
"Llama3.1-8B-Instruct": "meta.llama3-1-8b-instruct-v1:0",
"Llama3.1-70B-Instruct": "meta.llama3-1-70b-instruct-v1:0",
"Llama3.1-405B-Instruct": "meta.llama3-1-405b-instruct-v1:0",
}
class BedrockInferenceAdapter(Inference, RoutableProviderForModels):
@staticmethod
def _create_bedrock_client(config: BedrockConfig) -> BaseClient:
retries_config = {
k: v
for k, v in dict(
total_max_attempts=config.total_max_attempts,
mode=config.retry_mode,
).items()
if v is not None
}
config_args = {
k: v
for k, v in dict(
region_name=config.region_name,
retries=retries_config if retries_config else None,
connect_timeout=config.connect_timeout,
read_timeout=config.read_timeout,
).items()
if v is not None
}
boto3_config = Config(**config_args)
session_args = {
k: v
for k, v in dict(
aws_access_key_id=config.aws_access_key_id,
aws_secret_access_key=config.aws_secret_access_key,
aws_session_token=config.aws_session_token,
region_name=config.region_name,
profile_name=config.profile_name,
).items()
if v is not None
}
boto3_session = boto3.session.Session(**session_args)
return boto3_session.client("bedrock-runtime", config=boto3_config)
def __init__(self, config: BedrockConfig) -> None:
RoutableProviderForModels.__init__(
self, stack_to_provider_models_map=BEDROCK_SUPPORTED_MODELS
)
self._config = config
self._client = BedrockInferenceAdapter._create_bedrock_client(config)
tokenizer = Tokenizer.get_instance()
self.formatter = ChatFormat(tokenizer)
@property
def client(self) -> BaseClient:
return self._client
async def initialize(self) -> None:
pass
async def shutdown(self) -> None:
self.client.close()
async def completion(
self,
model: str,
content: InterleavedTextMedia,
sampling_params: Optional[SamplingParams] = SamplingParams(),
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> Union[CompletionResponse, CompletionResponseStreamChunk]:
raise NotImplementedError()
@staticmethod
def _bedrock_stop_reason_to_stop_reason(bedrock_stop_reason: str) -> StopReason:
if bedrock_stop_reason == "max_tokens":
return StopReason.out_of_tokens
return StopReason.end_of_turn
@staticmethod
def _builtin_tool_name_to_enum(tool_name_str: str) -> Union[BuiltinTool, str]:
for builtin_tool in BuiltinTool:
if builtin_tool.value == tool_name_str:
return builtin_tool
else:
return tool_name_str
@staticmethod
def _bedrock_message_to_message(converse_api_res: Dict) -> Message:
stop_reason = BedrockInferenceAdapter._bedrock_stop_reason_to_stop_reason(
converse_api_res["stopReason"]
)
bedrock_message = converse_api_res["output"]["message"]
role = bedrock_message["role"]
contents = bedrock_message["content"]
tool_calls = []
text_content = []
for content in contents:
if "toolUse" in content:
tool_use = content["toolUse"]
tool_calls.append(
ToolCall(
tool_name=BedrockInferenceAdapter._builtin_tool_name_to_enum(
tool_use["name"]
),
arguments=tool_use["input"] if "input" in tool_use else None,
call_id=tool_use["toolUseId"],
)
)
elif "text" in content:
text_content.append(content["text"])
return CompletionMessage(
role=role,
content=text_content,
stop_reason=stop_reason,
tool_calls=tool_calls,
)
@staticmethod
def _messages_to_bedrock_messages(
messages: List[Message],
) -> Tuple[List[Dict], Optional[List[Dict]]]:
bedrock_messages = []
system_bedrock_messages = []
user_contents = []
assistant_contents = None
for message in messages:
role = message.role
content_list = (
message.content
if isinstance(message.content, list)
else [message.content]
)
if role == "ipython" or role == "user":
if not user_contents:
user_contents = []
if role == "ipython":
user_contents.extend(
[
{
"toolResult": {
"toolUseId": message.call_id,
"content": [
{"text": content} for content in content_list
],
}
}
]
)
else:
user_contents.extend(
[{"text": content} for content in content_list]
)
if assistant_contents:
bedrock_messages.append(
{"role": "assistant", "content": assistant_contents}
)
assistant_contents = None
elif role == "system":
system_bedrock_messages.extend(
[{"text": content} for content in content_list]
)
elif role == "assistant":
if not assistant_contents:
assistant_contents = []
assistant_contents.extend(
[
{
"text": content,
}
for content in content_list
]
+ [
{
"toolUse": {
"input": tool_call.arguments,
"name": (
tool_call.tool_name
if isinstance(tool_call.tool_name, str)
else tool_call.tool_name.value
),
"toolUseId": tool_call.call_id,
}
}
for tool_call in message.tool_calls
]
)
if user_contents:
bedrock_messages.append({"role": "user", "content": user_contents})
user_contents = None
else:
# Unknown role
pass
if user_contents:
bedrock_messages.append({"role": "user", "content": user_contents})
if assistant_contents:
bedrock_messages.append(
{"role": "assistant", "content": assistant_contents}
)
if system_bedrock_messages:
return bedrock_messages, system_bedrock_messages
return bedrock_messages, None
@staticmethod
def get_bedrock_inference_config(sampling_params: Optional[SamplingParams]) -> Dict:
inference_config = {}
if sampling_params:
param_mapping = {
"max_tokens": "maxTokens",
"temperature": "temperature",
"top_p": "topP",
}
for k, v in param_mapping.items():
if getattr(sampling_params, k):
inference_config[v] = getattr(sampling_params, k)
return inference_config
@staticmethod
def _tool_parameters_to_input_schema(
tool_parameters: Optional[Dict[str, ToolParamDefinition]]
) -> Dict:
input_schema = {"type": "object"}
if not tool_parameters:
return input_schema
json_properties = {}
required = []
for name, param in tool_parameters.items():
json_property = {
"type": param.param_type,
}
if param.description:
json_property["description"] = param.description
if param.required:
required.append(name)
json_properties[name] = json_property
input_schema["properties"] = json_properties
if required:
input_schema["required"] = required
return input_schema
@staticmethod
def _tools_to_tool_config(
tools: Optional[List[ToolDefinition]], tool_choice: Optional[ToolChoice]
) -> Optional[Dict]:
if not tools:
return None
bedrock_tools = []
for tool in tools:
tool_name = (
tool.tool_name
if isinstance(tool.tool_name, str)
else tool.tool_name.value
)
tool_spec = {
"toolSpec": {
"name": tool_name,
"inputSchema": {
"json": BedrockInferenceAdapter._tool_parameters_to_input_schema(
tool.parameters
),
},
}
}
if tool.description:
tool_spec["toolSpec"]["description"] = tool.description
bedrock_tools.append(tool_spec)
tool_config = {
"tools": bedrock_tools,
}
if tool_choice:
tool_config["toolChoice"] = (
{"any": {}}
if tool_choice.value == ToolChoice.required
else {"auto": {}}
)
return tool_config
async def chat_completion(
self,
model: str,
messages: List[Message],
sampling_params: Optional[SamplingParams] = SamplingParams(),
# zero-shot tool definitions as input to the model
tools: Optional[List[ToolDefinition]] = None,
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> (
AsyncGenerator
): # Union[ChatCompletionResponse, ChatCompletionResponseStreamChunk]:
bedrock_model = self.map_to_provider_model(model)
inference_config = BedrockInferenceAdapter.get_bedrock_inference_config(
sampling_params
)
tool_config = BedrockInferenceAdapter._tools_to_tool_config(tools, tool_choice)
bedrock_messages, system_bedrock_messages = (
BedrockInferenceAdapter._messages_to_bedrock_messages(messages)
)
converse_api_params = {
"modelId": bedrock_model,
"messages": bedrock_messages,
}
if inference_config:
converse_api_params["inferenceConfig"] = inference_config
# Tool use is not supported in streaming mode
if tool_config and not stream:
converse_api_params["toolConfig"] = tool_config
if system_bedrock_messages:
converse_api_params["system"] = system_bedrock_messages
if not stream:
converse_api_res = self.client.converse(**converse_api_params)
output_message = BedrockInferenceAdapter._bedrock_message_to_message(
converse_api_res
)
yield ChatCompletionResponse(
completion_message=output_message,
logprobs=None,
)
else:
converse_stream_api_res = self.client.converse_stream(**converse_api_params)
event_stream = converse_stream_api_res["stream"]
for chunk in event_stream:
if "messageStart" in chunk:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.start,
delta="",
)
)
elif "contentBlockStart" in chunk:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content=ToolCall(
tool_name=chunk["contentBlockStart"]["toolUse"][
"name"
],
call_id=chunk["contentBlockStart"]["toolUse"][
"toolUseId"
],
),
parse_status=ToolCallParseStatus.started,
),
)
)
elif "contentBlockDelta" in chunk:
if "text" in chunk["contentBlockDelta"]["delta"]:
delta = chunk["contentBlockDelta"]["delta"]["text"]
else:
delta = ToolCallDelta(
content=ToolCall(
arguments=chunk["contentBlockDelta"]["delta"][
"toolUse"
]["input"]
),
parse_status=ToolCallParseStatus.success,
)
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=delta,
)
)
elif "contentBlockStop" in chunk:
# Ignored
pass
elif "messageStop" in chunk:
stop_reason = (
BedrockInferenceAdapter._bedrock_stop_reason_to_stop_reason(
chunk["messageStop"]["stopReason"]
)
)
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.complete,
delta="",
stop_reason=stop_reason,
)
)
elif "metadata" in chunk:
# Ignored
pass
else:
# Ignored
pass
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import * # noqa: F403
import boto3
from botocore.client import BaseClient
from botocore.config import Config
from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.tokenizer import Tokenizer
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.providers.adapters.inference.bedrock.config import BedrockConfig
BEDROCK_SUPPORTED_MODELS = {
"Llama3.1-8B-Instruct": "meta.llama3-1-8b-instruct-v1:0",
"Llama3.1-70B-Instruct": "meta.llama3-1-70b-instruct-v1:0",
"Llama3.1-405B-Instruct": "meta.llama3-1-405b-instruct-v1:0",
}
# NOTE: this is not quite tested after the recent refactors
class BedrockInferenceAdapter(ModelRegistryHelper, Inference):
def __init__(self, config: BedrockConfig) -> None:
ModelRegistryHelper.__init__(
self, stack_to_provider_models_map=BEDROCK_SUPPORTED_MODELS
)
self._config = config
self._client = _create_bedrock_client(config)
self.formatter = ChatFormat(Tokenizer.get_instance())
@property
def client(self) -> BaseClient:
return self._client
async def initialize(self) -> None:
pass
async def shutdown(self) -> None:
self.client.close()
def completion(
self,
model: str,
content: InterleavedTextMedia,
sampling_params: Optional[SamplingParams] = SamplingParams(),
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> Union[CompletionResponse, CompletionResponseStreamChunk]:
raise NotImplementedError()
@staticmethod
def _bedrock_stop_reason_to_stop_reason(bedrock_stop_reason: str) -> StopReason:
if bedrock_stop_reason == "max_tokens":
return StopReason.out_of_tokens
return StopReason.end_of_turn
@staticmethod
def _builtin_tool_name_to_enum(tool_name_str: str) -> Union[BuiltinTool, str]:
for builtin_tool in BuiltinTool:
if builtin_tool.value == tool_name_str:
return builtin_tool
else:
return tool_name_str
@staticmethod
def _bedrock_message_to_message(converse_api_res: Dict) -> Message:
stop_reason = BedrockInferenceAdapter._bedrock_stop_reason_to_stop_reason(
converse_api_res["stopReason"]
)
bedrock_message = converse_api_res["output"]["message"]
role = bedrock_message["role"]
contents = bedrock_message["content"]
tool_calls = []
text_content = []
for content in contents:
if "toolUse" in content:
tool_use = content["toolUse"]
tool_calls.append(
ToolCall(
tool_name=BedrockInferenceAdapter._builtin_tool_name_to_enum(
tool_use["name"]
),
arguments=tool_use["input"] if "input" in tool_use else None,
call_id=tool_use["toolUseId"],
)
)
elif "text" in content:
text_content.append(content["text"])
return CompletionMessage(
role=role,
content=text_content,
stop_reason=stop_reason,
tool_calls=tool_calls,
)
@staticmethod
def _messages_to_bedrock_messages(
messages: List[Message],
) -> Tuple[List[Dict], Optional[List[Dict]]]:
bedrock_messages = []
system_bedrock_messages = []
user_contents = []
assistant_contents = None
for message in messages:
role = message.role
content_list = (
message.content
if isinstance(message.content, list)
else [message.content]
)
if role == "ipython" or role == "user":
if not user_contents:
user_contents = []
if role == "ipython":
user_contents.extend(
[
{
"toolResult": {
"toolUseId": message.call_id,
"content": [
{"text": content} for content in content_list
],
}
}
]
)
else:
user_contents.extend(
[{"text": content} for content in content_list]
)
if assistant_contents:
bedrock_messages.append(
{"role": "assistant", "content": assistant_contents}
)
assistant_contents = None
elif role == "system":
system_bedrock_messages.extend(
[{"text": content} for content in content_list]
)
elif role == "assistant":
if not assistant_contents:
assistant_contents = []
assistant_contents.extend(
[
{
"text": content,
}
for content in content_list
]
+ [
{
"toolUse": {
"input": tool_call.arguments,
"name": (
tool_call.tool_name
if isinstance(tool_call.tool_name, str)
else tool_call.tool_name.value
),
"toolUseId": tool_call.call_id,
}
}
for tool_call in message.tool_calls
]
)
if user_contents:
bedrock_messages.append({"role": "user", "content": user_contents})
user_contents = None
else:
# Unknown role
pass
if user_contents:
bedrock_messages.append({"role": "user", "content": user_contents})
if assistant_contents:
bedrock_messages.append(
{"role": "assistant", "content": assistant_contents}
)
if system_bedrock_messages:
return bedrock_messages, system_bedrock_messages
return bedrock_messages, None
@staticmethod
def get_bedrock_inference_config(sampling_params: Optional[SamplingParams]) -> Dict:
inference_config = {}
if sampling_params:
param_mapping = {
"max_tokens": "maxTokens",
"temperature": "temperature",
"top_p": "topP",
}
for k, v in param_mapping.items():
if getattr(sampling_params, k):
inference_config[v] = getattr(sampling_params, k)
return inference_config
@staticmethod
def _tool_parameters_to_input_schema(
tool_parameters: Optional[Dict[str, ToolParamDefinition]],
) -> Dict:
input_schema = {"type": "object"}
if not tool_parameters:
return input_schema
json_properties = {}
required = []
for name, param in tool_parameters.items():
json_property = {
"type": param.param_type,
}
if param.description:
json_property["description"] = param.description
if param.required:
required.append(name)
json_properties[name] = json_property
input_schema["properties"] = json_properties
if required:
input_schema["required"] = required
return input_schema
@staticmethod
def _tools_to_tool_config(
tools: Optional[List[ToolDefinition]], tool_choice: Optional[ToolChoice]
) -> Optional[Dict]:
if not tools:
return None
bedrock_tools = []
for tool in tools:
tool_name = (
tool.tool_name
if isinstance(tool.tool_name, str)
else tool.tool_name.value
)
tool_spec = {
"toolSpec": {
"name": tool_name,
"inputSchema": {
"json": BedrockInferenceAdapter._tool_parameters_to_input_schema(
tool.parameters
),
},
}
}
if tool.description:
tool_spec["toolSpec"]["description"] = tool.description
bedrock_tools.append(tool_spec)
tool_config = {
"tools": bedrock_tools,
}
if tool_choice:
tool_config["toolChoice"] = (
{"any": {}}
if tool_choice.value == ToolChoice.required
else {"auto": {}}
)
return tool_config
def chat_completion(
self,
model: str,
messages: List[Message],
sampling_params: Optional[SamplingParams] = SamplingParams(),
# zero-shot tool definitions as input to the model
tools: Optional[List[ToolDefinition]] = None,
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> (
AsyncGenerator
): # Union[ChatCompletionResponse, ChatCompletionResponseStreamChunk]:
bedrock_model = self.map_to_provider_model(model)
inference_config = BedrockInferenceAdapter.get_bedrock_inference_config(
sampling_params
)
tool_config = BedrockInferenceAdapter._tools_to_tool_config(tools, tool_choice)
bedrock_messages, system_bedrock_messages = (
BedrockInferenceAdapter._messages_to_bedrock_messages(messages)
)
converse_api_params = {
"modelId": bedrock_model,
"messages": bedrock_messages,
}
if inference_config:
converse_api_params["inferenceConfig"] = inference_config
# Tool use is not supported in streaming mode
if tool_config and not stream:
converse_api_params["toolConfig"] = tool_config
if system_bedrock_messages:
converse_api_params["system"] = system_bedrock_messages
if not stream:
converse_api_res = self.client.converse(**converse_api_params)
output_message = BedrockInferenceAdapter._bedrock_message_to_message(
converse_api_res
)
yield ChatCompletionResponse(
completion_message=output_message,
logprobs=None,
)
else:
converse_stream_api_res = self.client.converse_stream(**converse_api_params)
event_stream = converse_stream_api_res["stream"]
for chunk in event_stream:
if "messageStart" in chunk:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.start,
delta="",
)
)
elif "contentBlockStart" in chunk:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content=ToolCall(
tool_name=chunk["contentBlockStart"]["toolUse"][
"name"
],
call_id=chunk["contentBlockStart"]["toolUse"][
"toolUseId"
],
),
parse_status=ToolCallParseStatus.started,
),
)
)
elif "contentBlockDelta" in chunk:
if "text" in chunk["contentBlockDelta"]["delta"]:
delta = chunk["contentBlockDelta"]["delta"]["text"]
else:
delta = ToolCallDelta(
content=ToolCall(
arguments=chunk["contentBlockDelta"]["delta"][
"toolUse"
]["input"]
),
parse_status=ToolCallParseStatus.success,
)
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=delta,
)
)
elif "contentBlockStop" in chunk:
# Ignored
pass
elif "messageStop" in chunk:
stop_reason = (
BedrockInferenceAdapter._bedrock_stop_reason_to_stop_reason(
chunk["messageStop"]["stopReason"]
)
)
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.complete,
delta="",
stop_reason=stop_reason,
)
)
elif "metadata" in chunk:
# Ignored
pass
else:
# Ignored
pass
async def embeddings(
self,
model: str,
contents: List[InterleavedTextMedia],
) -> EmbeddingsResponse:
raise NotImplementedError()
def _create_bedrock_client(config: BedrockConfig) -> BaseClient:
retries_config = {
k: v
for k, v in dict(
total_max_attempts=config.total_max_attempts,
mode=config.retry_mode,
).items()
if v is not None
}
config_args = {
k: v
for k, v in dict(
region_name=config.region_name,
retries=retries_config if retries_config else None,
connect_timeout=config.connect_timeout,
read_timeout=config.read_timeout,
).items()
if v is not None
}
boto3_config = Config(**config_args)
session_args = {
k: v
for k, v in dict(
aws_access_key_id=config.aws_access_key_id,
aws_secret_access_key=config.aws_secret_access_key,
aws_session_token=config.aws_session_token,
region_name=config.region_name,
profile_name=config.profile_name,
).items()
if v is not None
}
boto3_session = boto3.session.Session(**session_args)
return boto3_session.client("bedrock-runtime", config=boto3_config)

View file

@ -6,39 +6,41 @@
from typing import AsyncGenerator
from openai import OpenAI
from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.datatypes import Message, StopReason
from llama_models.llama3.api.datatypes import Message
from llama_models.llama3.api.tokenizer import Tokenizer
from llama_models.sku_list import resolve_model
from openai import OpenAI
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.providers.utils.inference.augment_messages import (
augment_messages_for_tools,
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
from llama_stack.providers.utils.inference.openai_compat import (
get_sampling_options,
process_chat_completion_response,
process_chat_completion_stream_response,
)
from llama_stack.providers.utils.inference.prompt_adapter import (
chat_completion_request_to_prompt,
)
from .config import DatabricksImplConfig
DATABRICKS_SUPPORTED_MODELS = {
"Llama3.1-70B-Instruct": "databricks-meta-llama-3-1-70b-instruct",
"Llama3.1-405B-Instruct": "databricks-meta-llama-3-1-405b-instruct",
}
class DatabricksInferenceAdapter(Inference):
class DatabricksInferenceAdapter(ModelRegistryHelper, Inference):
def __init__(self, config: DatabricksImplConfig) -> None:
self.config = config
tokenizer = Tokenizer.get_instance()
self.formatter = ChatFormat(tokenizer)
@property
def client(self) -> OpenAI:
return OpenAI(
base_url=self.config.url,
api_key=self.config.api_token
ModelRegistryHelper.__init__(
self, stack_to_provider_models_map=DATABRICKS_SUPPORTED_MODELS
)
self.config = config
self.formatter = ChatFormat(Tokenizer.get_instance())
async def initialize(self) -> None:
return
@ -46,47 +48,10 @@ class DatabricksInferenceAdapter(Inference):
async def shutdown(self) -> None:
pass
async def validate_routing_keys(self, routing_keys: list[str]) -> None:
# these are the model names the Llama Stack will use to route requests to this provider
# perform validation here if necessary
pass
async def completion(self, request: CompletionRequest) -> AsyncGenerator:
def completion(self, request: CompletionRequest) -> AsyncGenerator:
raise NotImplementedError()
def _messages_to_databricks_messages(self, messages: list[Message]) -> list:
databricks_messages = []
for message in messages:
if message.role == "ipython":
role = "tool"
else:
role = message.role
databricks_messages.append({"role": role, "content": message.content})
return databricks_messages
def resolve_databricks_model(self, model_name: str) -> str:
model = resolve_model(model_name)
assert (
model is not None
and model.descriptor(shorten_default_variant=True)
in DATABRICKS_SUPPORTED_MODELS
), f"Unsupported model: {model_name}, use one of the supported models: {','.join(DATABRICKS_SUPPORTED_MODELS.keys())}"
return DATABRICKS_SUPPORTED_MODELS.get(
model.descriptor(shorten_default_variant=True)
)
def get_databricks_chat_options(self, request: ChatCompletionRequest) -> dict:
options = {}
if request.sampling_params is not None:
for attr in {"temperature", "top_p", "top_k", "max_tokens"}:
if getattr(request.sampling_params, attr):
options[attr] = getattr(request.sampling_params, attr)
return options
async def chat_completion(
def chat_completion(
self,
model: str,
messages: List[Message],
@ -108,150 +73,46 @@ class DatabricksInferenceAdapter(Inference):
logprobs=logprobs,
)
messages = augment_messages_for_tools(request)
options = self.get_databricks_chat_options(request)
databricks_model = self.resolve_databricks_model(request.model)
if not request.stream:
r = self.client.chat.completions.create(
model=databricks_model,
messages=self._messages_to_databricks_messages(messages),
stream=False,
**options,
)
stop_reason = None
if r.choices[0].finish_reason:
if r.choices[0].finish_reason == "stop":
stop_reason = StopReason.end_of_turn
elif r.choices[0].finish_reason == "length":
stop_reason = StopReason.out_of_tokens
completion_message = self.formatter.decode_assistant_message_from_content(
r.choices[0].message.content, stop_reason
)
yield ChatCompletionResponse(
completion_message=completion_message,
logprobs=None,
)
client = OpenAI(base_url=self.config.url, api_key=self.config.api_token)
if stream:
return self._stream_chat_completion(request, client)
else:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.start,
delta="",
)
)
return self._nonstream_chat_completion(request, client)
buffer = ""
ipython = False
stop_reason = None
async def _nonstream_chat_completion(
self, request: ChatCompletionRequest, client: OpenAI
) -> ChatCompletionResponse:
params = self._get_params(request)
r = client.completions.create(**params)
return process_chat_completion_response(request, r, self.formatter)
for chunk in self.client.chat.completions.create(
model=databricks_model,
messages=self._messages_to_databricks_messages(messages),
stream=True,
**options,
):
if chunk.choices[0].finish_reason:
if (
stop_reason is None
and chunk.choices[0].finish_reason == "stop"
):
stop_reason = StopReason.end_of_turn
elif (
stop_reason is None
and chunk.choices[0].finish_reason == "length"
):
stop_reason = StopReason.out_of_tokens
break
async def _stream_chat_completion(
self, request: ChatCompletionRequest, client: OpenAI
) -> AsyncGenerator:
params = self._get_params(request)
text = chunk.choices[0].delta.content
async def _to_async_generator():
s = client.completions.create(**params)
for chunk in s:
yield chunk
if text is None:
continue
stream = _to_async_generator()
async for chunk in process_chat_completion_stream_response(
request, stream, self.formatter
):
yield chunk
# check if its a tool call ( aka starts with <|python_tag|> )
if not ipython and text.startswith("<|python_tag|>"):
ipython = True
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content="",
parse_status=ToolCallParseStatus.started,
),
)
)
buffer += text
continue
def _get_params(self, request: ChatCompletionRequest) -> dict:
return {
"model": self.map_to_provider_model(request.model),
"prompt": chat_completion_request_to_prompt(request, self.formatter),
"stream": request.stream,
**get_sampling_options(request),
}
if ipython:
if text == "<|eot_id|>":
stop_reason = StopReason.end_of_turn
text = ""
continue
elif text == "<|eom_id|>":
stop_reason = StopReason.end_of_message
text = ""
continue
buffer += text
delta = ToolCallDelta(
content=text,
parse_status=ToolCallParseStatus.in_progress,
)
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=delta,
stop_reason=stop_reason,
)
)
else:
buffer += text
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=text,
stop_reason=stop_reason,
)
)
# parse tool calls and report errors
message = self.formatter.decode_assistant_message_from_content(
buffer, stop_reason
)
parsed_tool_calls = len(message.tool_calls) > 0
if ipython and not parsed_tool_calls:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content="",
parse_status=ToolCallParseStatus.failure,
),
stop_reason=stop_reason,
)
)
for tool_call in message.tool_calls:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content=tool_call,
parse_status=ToolCallParseStatus.success,
),
stop_reason=stop_reason,
)
)
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.complete,
delta="",
stop_reason=stop_reason,
)
)
async def embeddings(
self,
model: str,
contents: List[InterleavedTextMedia],
) -> EmbeddingsResponse:
raise NotImplementedError()

View file

@ -10,14 +10,19 @@ from fireworks.client import Fireworks
from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.datatypes import Message, StopReason
from llama_models.llama3.api.datatypes import Message
from llama_models.llama3.api.tokenizer import Tokenizer
from llama_stack.providers.utils.inference.routable import RoutableProviderForModels
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.providers.utils.inference.augment_messages import (
augment_messages_for_tools,
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
from llama_stack.providers.utils.inference.openai_compat import (
get_sampling_options,
process_chat_completion_response,
process_chat_completion_stream_response,
)
from llama_stack.providers.utils.inference.prompt_adapter import (
chat_completion_request_to_prompt,
)
from .config import FireworksImplConfig
@ -27,21 +32,18 @@ FIREWORKS_SUPPORTED_MODELS = {
"Llama3.1-8B-Instruct": "fireworks/llama-v3p1-8b-instruct",
"Llama3.1-70B-Instruct": "fireworks/llama-v3p1-70b-instruct",
"Llama3.1-405B-Instruct": "fireworks/llama-v3p1-405b-instruct",
"Llama3.2-1B-Instruct": "fireworks/llama-v3p2-1b-instruct",
"Llama3.2-3B-Instruct": "fireworks/llama-v3p2-3b-instruct",
}
class FireworksInferenceAdapter(Inference, RoutableProviderForModels):
class FireworksInferenceAdapter(ModelRegistryHelper, Inference):
def __init__(self, config: FireworksImplConfig) -> None:
RoutableProviderForModels.__init__(
ModelRegistryHelper.__init__(
self, stack_to_provider_models_map=FIREWORKS_SUPPORTED_MODELS
)
self.config = config
tokenizer = Tokenizer.get_instance()
self.formatter = ChatFormat(tokenizer)
@property
def client(self) -> Fireworks:
return Fireworks(api_key=self.config.api_key)
self.formatter = ChatFormat(Tokenizer.get_instance())
async def initialize(self) -> None:
return
@ -49,7 +51,7 @@ class FireworksInferenceAdapter(Inference, RoutableProviderForModels):
async def shutdown(self) -> None:
pass
async def completion(
def completion(
self,
model: str,
content: InterleavedTextMedia,
@ -59,27 +61,7 @@ class FireworksInferenceAdapter(Inference, RoutableProviderForModels):
) -> AsyncGenerator:
raise NotImplementedError()
def _messages_to_fireworks_messages(self, messages: list[Message]) -> list:
fireworks_messages = []
for message in messages:
if message.role == "ipython":
role = "tool"
else:
role = message.role
fireworks_messages.append({"role": role, "content": message.content})
return fireworks_messages
def get_fireworks_chat_options(self, request: ChatCompletionRequest) -> dict:
options = {}
if request.sampling_params is not None:
for attr in {"temperature", "top_p", "top_k", "max_tokens"}:
if getattr(request.sampling_params, attr):
options[attr] = getattr(request.sampling_params, attr)
return options
async def chat_completion(
def chat_completion(
self,
model: str,
messages: List[Message],
@ -101,147 +83,48 @@ class FireworksInferenceAdapter(Inference, RoutableProviderForModels):
logprobs=logprobs,
)
messages = augment_messages_for_tools(request)
# accumulate sampling params and other options to pass to fireworks
options = self.get_fireworks_chat_options(request)
fireworks_model = self.map_to_provider_model(request.model)
if not request.stream:
r = await self.client.chat.completions.acreate(
model=fireworks_model,
messages=self._messages_to_fireworks_messages(messages),
stream=False,
**options,
)
stop_reason = None
if r.choices[0].finish_reason:
if r.choices[0].finish_reason == "stop":
stop_reason = StopReason.end_of_turn
elif r.choices[0].finish_reason == "length":
stop_reason = StopReason.out_of_tokens
completion_message = self.formatter.decode_assistant_message_from_content(
r.choices[0].message.content, stop_reason
)
yield ChatCompletionResponse(
completion_message=completion_message,
logprobs=None,
)
client = Fireworks(api_key=self.config.api_key)
if stream:
return self._stream_chat_completion(request, client)
else:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.start,
delta="",
)
)
return self._nonstream_chat_completion(request, client)
buffer = ""
ipython = False
stop_reason = None
async def _nonstream_chat_completion(
self, request: ChatCompletionRequest, client: Fireworks
) -> ChatCompletionResponse:
params = self._get_params(request)
r = await client.completion.acreate(**params)
return process_chat_completion_response(request, r, self.formatter)
async for chunk in self.client.chat.completions.acreate(
model=fireworks_model,
messages=self._messages_to_fireworks_messages(messages),
stream=True,
**options,
):
if chunk.choices[0].finish_reason:
if stop_reason is None and chunk.choices[0].finish_reason == "stop":
stop_reason = StopReason.end_of_turn
elif (
stop_reason is None
and chunk.choices[0].finish_reason == "length"
):
stop_reason = StopReason.out_of_tokens
break
async def _stream_chat_completion(
self, request: ChatCompletionRequest, client: Fireworks
) -> AsyncGenerator:
params = self._get_params(request)
text = chunk.choices[0].delta.content
if text is None:
continue
stream = client.completion.acreate(**params)
async for chunk in process_chat_completion_stream_response(
request, stream, self.formatter
):
yield chunk
# check if its a tool call ( aka starts with <|python_tag|> )
if not ipython and text.startswith("<|python_tag|>"):
ipython = True
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content="",
parse_status=ToolCallParseStatus.started,
),
)
)
buffer += text
continue
def _get_params(self, request: ChatCompletionRequest) -> dict:
prompt = chat_completion_request_to_prompt(request, self.formatter)
# Fireworks always prepends with BOS
if prompt.startswith("<|begin_of_text|>"):
prompt = prompt[len("<|begin_of_text|>") :]
if ipython:
if text == "<|eot_id|>":
stop_reason = StopReason.end_of_turn
text = ""
continue
elif text == "<|eom_id|>":
stop_reason = StopReason.end_of_message
text = ""
continue
options = get_sampling_options(request)
options.setdefault("max_tokens", 512)
return {
"model": self.map_to_provider_model(request.model),
"prompt": prompt,
"stream": request.stream,
**options,
}
buffer += text
delta = ToolCallDelta(
content=text,
parse_status=ToolCallParseStatus.in_progress,
)
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=delta,
stop_reason=stop_reason,
)
)
else:
buffer += text
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=text,
stop_reason=stop_reason,
)
)
# parse tool calls and report errors
message = self.formatter.decode_assistant_message_from_content(
buffer, stop_reason
)
parsed_tool_calls = len(message.tool_calls) > 0
if ipython and not parsed_tool_calls:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content="",
parse_status=ToolCallParseStatus.failure,
),
stop_reason=stop_reason,
)
)
for tool_call in message.tool_calls:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content=tool_call,
parse_status=ToolCallParseStatus.success,
),
stop_reason=stop_reason,
)
)
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.complete,
delta="",
stop_reason=stop_reason,
)
)
async def embeddings(
self,
model: str,
contents: List[InterleavedTextMedia],
) -> EmbeddingsResponse:
raise NotImplementedError()

View file

@ -9,35 +9,38 @@ from typing import AsyncGenerator
import httpx
from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.datatypes import Message, StopReason
from llama_models.llama3.api.datatypes import Message
from llama_models.llama3.api.tokenizer import Tokenizer
from ollama import AsyncClient
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.providers.utils.inference.augment_messages import (
augment_messages_for_tools,
)
from llama_stack.providers.utils.inference.routable import RoutableProviderForModels
from llama_stack.providers.datatypes import ModelsProtocolPrivate
# TODO: Eventually this will move to the llama cli model list command
# mapping of Model SKUs to ollama models
OLLAMA_SUPPORTED_SKUS = {
from llama_stack.providers.utils.inference.openai_compat import (
get_sampling_options,
OpenAICompatCompletionChoice,
OpenAICompatCompletionResponse,
process_chat_completion_response,
process_chat_completion_stream_response,
)
from llama_stack.providers.utils.inference.prompt_adapter import (
chat_completion_request_to_prompt,
)
OLLAMA_SUPPORTED_MODELS = {
"Llama3.1-8B-Instruct": "llama3.1:8b-instruct-fp16",
"Llama3.1-70B-Instruct": "llama3.1:70b-instruct-fp16",
"Llama3.2-1B-Instruct": "llama3.2:1b-instruct-fp16",
"Llama3.2-3B-Instruct": "llama3.2:3b-instruct-fp16",
"Llama-Guard-3-8B": "xe/llamaguard3:latest",
}
class OllamaInferenceAdapter(Inference, RoutableProviderForModels):
class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
def __init__(self, url: str) -> None:
RoutableProviderForModels.__init__(
self, stack_to_provider_models_map=OLLAMA_SUPPORTED_SKUS
)
self.url = url
tokenizer = Tokenizer.get_instance()
self.formatter = ChatFormat(tokenizer)
self.formatter = ChatFormat(Tokenizer.get_instance())
@property
def client(self) -> AsyncClient:
@ -55,7 +58,33 @@ class OllamaInferenceAdapter(Inference, RoutableProviderForModels):
async def shutdown(self) -> None:
pass
async def completion(
async def register_model(self, model: ModelDef) -> None:
raise ValueError("Dynamic model registration is not supported")
async def list_models(self) -> List[ModelDef]:
ollama_to_llama = {v: k for k, v in OLLAMA_SUPPORTED_MODELS.items()}
ret = []
res = await self.client.ps()
for r in res["models"]:
if r["model"] not in ollama_to_llama:
print(f"Ollama is running a model unknown to Llama Stack: {r['model']}")
continue
llama_model = ollama_to_llama[r["model"]]
ret.append(
ModelDef(
identifier=llama_model,
llama_model=llama_model,
metadata={
"ollama_model": r["model"],
},
)
)
return ret
def completion(
self,
model: str,
content: InterleavedTextMedia,
@ -65,32 +94,7 @@ class OllamaInferenceAdapter(Inference, RoutableProviderForModels):
) -> AsyncGenerator:
raise NotImplementedError()
def _messages_to_ollama_messages(self, messages: list[Message]) -> list:
ollama_messages = []
for message in messages:
if message.role == "ipython":
role = "tool"
else:
role = message.role
ollama_messages.append({"role": role, "content": message.content})
return ollama_messages
def get_ollama_chat_options(self, request: ChatCompletionRequest) -> dict:
options = {}
if request.sampling_params is not None:
for attr in {"temperature", "top_p", "top_k", "max_tokens"}:
if getattr(request.sampling_params, attr):
options[attr] = getattr(request.sampling_params, attr)
if (
request.sampling_params.repetition_penalty is not None
and request.sampling_params.repetition_penalty != 1.0
):
options["repeat_penalty"] = request.sampling_params.repetition_penalty
return options
async def chat_completion(
def chat_completion(
self,
model: str,
messages: List[Message],
@ -111,156 +115,61 @@ class OllamaInferenceAdapter(Inference, RoutableProviderForModels):
stream=stream,
logprobs=logprobs,
)
messages = augment_messages_for_tools(request)
# accumulate sampling params and other options to pass to ollama
options = self.get_ollama_chat_options(request)
ollama_model = self.map_to_provider_model(request.model)
res = await self.client.ps()
need_model_pull = True
for r in res["models"]:
if ollama_model == r["model"]:
need_model_pull = False
break
if need_model_pull:
print(f"Pulling model: {ollama_model}")
status = await self.client.pull(ollama_model)
assert (
status["status"] == "success"
), f"Failed to pull model {self.model} in ollama"
if not request.stream:
r = await self.client.chat(
model=ollama_model,
messages=self._messages_to_ollama_messages(messages),
stream=False,
options=options,
)
stop_reason = None
if r["done"]:
if r["done_reason"] == "stop":
stop_reason = StopReason.end_of_turn
elif r["done_reason"] == "length":
stop_reason = StopReason.out_of_tokens
completion_message = self.formatter.decode_assistant_message_from_content(
r["message"]["content"], stop_reason
)
yield ChatCompletionResponse(
completion_message=completion_message,
logprobs=None,
)
if stream:
return self._stream_chat_completion(request)
else:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.start,
delta="",
return self._nonstream_chat_completion(request)
def _get_params(self, request: ChatCompletionRequest) -> dict:
return {
"model": OLLAMA_SUPPORTED_MODELS[request.model],
"prompt": chat_completion_request_to_prompt(request, self.formatter),
"options": get_sampling_options(request),
"raw": True,
"stream": request.stream,
}
async def _nonstream_chat_completion(
self, request: ChatCompletionRequest
) -> ChatCompletionResponse:
params = self._get_params(request)
r = await self.client.generate(**params)
assert isinstance(r, dict)
choice = OpenAICompatCompletionChoice(
finish_reason=r["done_reason"] if r["done"] else None,
text=r["response"],
)
response = OpenAICompatCompletionResponse(
choices=[choice],
)
return process_chat_completion_response(request, response, self.formatter)
async def _stream_chat_completion(
self, request: ChatCompletionRequest
) -> AsyncGenerator:
params = self._get_params(request)
async def _generate_and_convert_to_openai_compat():
s = await self.client.generate(**params)
async for chunk in s:
choice = OpenAICompatCompletionChoice(
finish_reason=chunk["done_reason"] if chunk["done"] else None,
text=chunk["response"],
)
)
stream = await self.client.chat(
model=ollama_model,
messages=self._messages_to_ollama_messages(messages),
stream=True,
options=options,
)
buffer = ""
ipython = False
stop_reason = None
async for chunk in stream:
if chunk["done"]:
if stop_reason is None and chunk["done_reason"] == "stop":
stop_reason = StopReason.end_of_turn
elif stop_reason is None and chunk["done_reason"] == "length":
stop_reason = StopReason.out_of_tokens
break
text = chunk["message"]["content"]
# check if its a tool call ( aka starts with <|python_tag|> )
if not ipython and text.startswith("<|python_tag|>"):
ipython = True
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content="",
parse_status=ToolCallParseStatus.started,
),
)
)
buffer += text
continue
if ipython:
if text == "<|eot_id|>":
stop_reason = StopReason.end_of_turn
text = ""
continue
elif text == "<|eom_id|>":
stop_reason = StopReason.end_of_message
text = ""
continue
buffer += text
delta = ToolCallDelta(
content=text,
parse_status=ToolCallParseStatus.in_progress,
)
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=delta,
stop_reason=stop_reason,
)
)
else:
buffer += text
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=text,
stop_reason=stop_reason,
)
)
# parse tool calls and report errors
message = self.formatter.decode_assistant_message_from_content(
buffer, stop_reason
)
parsed_tool_calls = len(message.tool_calls) > 0
if ipython and not parsed_tool_calls:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content="",
parse_status=ToolCallParseStatus.failure,
),
stop_reason=stop_reason,
)
yield OpenAICompatCompletionResponse(
choices=[choice],
)
for tool_call in message.tool_calls:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content=tool_call,
parse_status=ToolCallParseStatus.success,
),
stop_reason=stop_reason,
)
)
stream = _generate_and_convert_to_openai_compat()
async for chunk in process_chat_completion_stream_response(
request, stream, self.formatter
):
yield chunk
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.complete,
delta="",
stop_reason=stop_reason,
)
)
async def embeddings(
self,
model: str,
contents: List[InterleavedTextMedia],
) -> EmbeddingsResponse:
raise NotImplementedError()

View file

@ -9,14 +9,12 @@ from .config import SampleConfig
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.distribution.datatypes import RoutableProvider
class SampleInferenceImpl(Inference, RoutableProvider):
class SampleInferenceImpl(Inference):
def __init__(self, config: SampleConfig):
self.config = config
async def validate_routing_keys(self, routing_keys: list[str]) -> None:
async def register_model(self, model: ModelDef) -> None:
# these are the model names the Llama Stack will use to route requests to this provider
# perform validation here if necessary
pass

View file

@ -34,7 +34,7 @@ class InferenceEndpointImplConfig(BaseModel):
@json_schema_type
class InferenceAPIImplConfig(BaseModel):
model_id: str = Field(
huggingface_repo: str = Field(
description="The model ID of the model on the Hugging Face Hub (e.g. 'meta-llama/Meta-Llama-3.1-70B-Instruct')",
)
api_token: Optional[str] = Field(

View file

@ -6,18 +6,27 @@
import logging
from typing import AsyncGenerator
from typing import AsyncGenerator, List, Optional
from huggingface_hub import AsyncInferenceClient, HfApi
from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.datatypes import StopReason
from llama_models.llama3.api.tokenizer import Tokenizer
from llama_stack.distribution.datatypes import RoutableProvider
from llama_models.sku_list import all_registered_models
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.providers.utils.inference.augment_messages import (
augment_messages_for_tools,
from llama_stack.apis.models import * # noqa: F403
from llama_stack.providers.datatypes import ModelDef, ModelsProtocolPrivate
from llama_stack.providers.utils.inference.openai_compat import (
get_sampling_options,
OpenAICompatCompletionChoice,
OpenAICompatCompletionResponse,
process_chat_completion_response,
process_chat_completion_stream_response,
)
from llama_stack.providers.utils.inference.prompt_adapter import (
chat_completion_request_to_model_input_info,
)
from .config import InferenceAPIImplConfig, InferenceEndpointImplConfig, TGIImplConfig
@ -25,24 +34,39 @@ from .config import InferenceAPIImplConfig, InferenceEndpointImplConfig, TGIImpl
logger = logging.getLogger(__name__)
class _HfAdapter(Inference, RoutableProvider):
class _HfAdapter(Inference, ModelsProtocolPrivate):
client: AsyncInferenceClient
max_tokens: int
model_id: str
def __init__(self) -> None:
self.tokenizer = Tokenizer.get_instance()
self.formatter = ChatFormat(self.tokenizer)
self.formatter = ChatFormat(Tokenizer.get_instance())
self.huggingface_repo_to_llama_model_id = {
model.huggingface_repo: model.descriptor()
for model in all_registered_models()
if model.huggingface_repo
}
async def validate_routing_keys(self, routing_keys: list[str]) -> None:
# these are the model names the Llama Stack will use to route requests to this provider
# perform validation here if necessary
pass
async def register_model(self, model: ModelDef) -> None:
raise ValueError("Model registration is not supported for HuggingFace models")
async def list_models(self) -> List[ModelDef]:
repo = self.model_id
identifier = self.huggingface_repo_to_llama_model_id[repo]
return [
ModelDef(
identifier=identifier,
llama_model=identifier,
metadata={
"huggingface_repo": repo,
},
)
]
async def shutdown(self) -> None:
pass
async def completion(
def completion(
self,
model: str,
content: InterleavedTextMedia,
@ -52,16 +76,7 @@ class _HfAdapter(Inference, RoutableProvider):
) -> AsyncGenerator:
raise NotImplementedError()
def get_chat_options(self, request: ChatCompletionRequest) -> dict:
options = {}
if request.sampling_params is not None:
for attr in {"temperature", "top_p", "top_k", "max_tokens"}:
if getattr(request.sampling_params, attr):
options[attr] = getattr(request.sampling_params, attr)
return options
async def chat_completion(
def chat_completion(
self,
model: str,
messages: List[Message],
@ -83,146 +98,71 @@ class _HfAdapter(Inference, RoutableProvider):
logprobs=logprobs,
)
messages = augment_messages_for_tools(request)
model_input = self.formatter.encode_dialog_prompt(messages)
prompt = self.tokenizer.decode(model_input.tokens)
if stream:
return self._stream_chat_completion(request)
else:
return self._nonstream_chat_completion(request)
input_tokens = len(model_input.tokens)
async def _nonstream_chat_completion(
self, request: ChatCompletionRequest
) -> ChatCompletionResponse:
params = self._get_params(request)
r = await self.client.text_generation(**params)
choice = OpenAICompatCompletionChoice(
finish_reason=r.details.finish_reason,
text="".join(t.text for t in r.details.tokens),
)
response = OpenAICompatCompletionResponse(
choices=[choice],
)
return process_chat_completion_response(request, response, self.formatter)
async def _stream_chat_completion(
self, request: ChatCompletionRequest
) -> AsyncGenerator:
params = self._get_params(request)
async def _generate_and_convert_to_openai_compat():
s = await self.client.text_generation(**params)
async for chunk in s:
token_result = chunk.token
choice = OpenAICompatCompletionChoice(text=token_result.text)
yield OpenAICompatCompletionResponse(
choices=[choice],
)
stream = _generate_and_convert_to_openai_compat()
async for chunk in process_chat_completion_stream_response(
request, stream, self.formatter
):
yield chunk
def _get_params(self, request: ChatCompletionRequest) -> dict:
prompt, input_tokens = chat_completion_request_to_model_input_info(
request, self.formatter
)
max_new_tokens = min(
request.sampling_params.max_tokens or (self.max_tokens - input_tokens),
self.max_tokens - input_tokens - 1,
)
options = get_sampling_options(request)
return dict(
prompt=prompt,
stream=request.stream,
details=True,
max_new_tokens=max_new_tokens,
stop_sequences=["<|eom_id|>", "<|eot_id|>"],
**options,
)
print(f"Calculated max_new_tokens: {max_new_tokens}")
options = self.get_chat_options(request)
if not request.stream:
response = await self.client.text_generation(
prompt=prompt,
stream=False,
details=True,
max_new_tokens=max_new_tokens,
stop_sequences=["<|eom_id|>", "<|eot_id|>"],
**options,
)
stop_reason = None
if response.details.finish_reason:
if response.details.finish_reason in ["stop", "eos_token"]:
stop_reason = StopReason.end_of_turn
elif response.details.finish_reason == "length":
stop_reason = StopReason.out_of_tokens
completion_message = self.formatter.decode_assistant_message_from_content(
response.generated_text,
stop_reason,
)
yield ChatCompletionResponse(
completion_message=completion_message,
logprobs=None,
)
else:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.start,
delta="",
)
)
buffer = ""
ipython = False
stop_reason = None
tokens = []
async for response in await self.client.text_generation(
prompt=prompt,
stream=True,
details=True,
max_new_tokens=max_new_tokens,
stop_sequences=["<|eom_id|>", "<|eot_id|>"],
**options,
):
token_result = response.token
buffer += token_result.text
tokens.append(token_result.id)
if not ipython and buffer.startswith("<|python_tag|>"):
ipython = True
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content="",
parse_status=ToolCallParseStatus.started,
),
)
)
buffer = buffer[len("<|python_tag|>") :]
continue
if token_result.text == "<|eot_id|>":
stop_reason = StopReason.end_of_turn
text = ""
elif token_result.text == "<|eom_id|>":
stop_reason = StopReason.end_of_message
text = ""
else:
text = token_result.text
if ipython:
delta = ToolCallDelta(
content=text,
parse_status=ToolCallParseStatus.in_progress,
)
else:
delta = text
if stop_reason is None:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=delta,
stop_reason=stop_reason,
)
)
if stop_reason is None:
stop_reason = StopReason.out_of_tokens
# parse tool calls and report errors
message = self.formatter.decode_assistant_message(tokens, stop_reason)
parsed_tool_calls = len(message.tool_calls) > 0
if ipython and not parsed_tool_calls:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content="",
parse_status=ToolCallParseStatus.failure,
),
stop_reason=stop_reason,
)
)
for tool_call in message.tool_calls:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content=tool_call,
parse_status=ToolCallParseStatus.success,
),
stop_reason=stop_reason,
)
)
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.complete,
delta="",
stop_reason=stop_reason,
)
)
async def embeddings(
self,
model: str,
contents: List[InterleavedTextMedia],
) -> EmbeddingsResponse:
raise NotImplementedError()
class TGIAdapter(_HfAdapter):
@ -236,7 +176,7 @@ class TGIAdapter(_HfAdapter):
class InferenceAPIAdapter(_HfAdapter):
async def initialize(self, config: InferenceAPIImplConfig) -> None:
self.client = AsyncInferenceClient(
model=config.model_id, token=config.api_token
model=config.huggingface_repo, token=config.api_token
)
endpoint_info = await self.client.get_endpoint_info()
self.max_tokens = endpoint_info["max_total_tokens"]

View file

@ -8,17 +8,22 @@ from typing import AsyncGenerator
from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.datatypes import Message, StopReason
from llama_models.llama3.api.datatypes import Message
from llama_models.llama3.api.tokenizer import Tokenizer
from together import Together
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.distribution.request_headers import NeedsRequestProviderData
from llama_stack.providers.utils.inference.augment_messages import (
augment_messages_for_tools,
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
from llama_stack.providers.utils.inference.openai_compat import (
get_sampling_options,
process_chat_completion_response,
process_chat_completion_stream_response,
)
from llama_stack.providers.utils.inference.prompt_adapter import (
chat_completion_request_to_prompt,
)
from llama_stack.providers.utils.inference.routable import RoutableProviderForModels
from .config import TogetherImplConfig
@ -34,19 +39,14 @@ TOGETHER_SUPPORTED_MODELS = {
class TogetherInferenceAdapter(
Inference, NeedsRequestProviderData, RoutableProviderForModels
ModelRegistryHelper, Inference, NeedsRequestProviderData
):
def __init__(self, config: TogetherImplConfig) -> None:
RoutableProviderForModels.__init__(
ModelRegistryHelper.__init__(
self, stack_to_provider_models_map=TOGETHER_SUPPORTED_MODELS
)
self.config = config
tokenizer = Tokenizer.get_instance()
self.formatter = ChatFormat(tokenizer)
@property
def client(self) -> Together:
return Together(api_key=self.config.api_key)
self.formatter = ChatFormat(Tokenizer.get_instance())
async def initialize(self) -> None:
return
@ -64,27 +64,7 @@ class TogetherInferenceAdapter(
) -> AsyncGenerator:
raise NotImplementedError()
def _messages_to_together_messages(self, messages: list[Message]) -> list:
together_messages = []
for message in messages:
if message.role == "ipython":
role = "tool"
else:
role = message.role
together_messages.append({"role": role, "content": message.content})
return together_messages
def get_together_chat_options(self, request: ChatCompletionRequest) -> dict:
options = {}
if request.sampling_params is not None:
for attr in {"temperature", "top_p", "top_k", "max_tokens"}:
if getattr(request.sampling_params, attr):
options[attr] = getattr(request.sampling_params, attr)
return options
async def chat_completion(
def chat_completion(
self,
model: str,
messages: List[Message],
@ -95,7 +75,6 @@ class TogetherInferenceAdapter(
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> AsyncGenerator:
together_api_key = None
if self.config.api_key is not None:
together_api_key = self.config.api_key
@ -108,7 +87,6 @@ class TogetherInferenceAdapter(
together_api_key = provider_data.together_api_key
client = Together(api_key=together_api_key)
# wrapper request to make it easier to pass around (internal only, not exposed to API)
request = ChatCompletionRequest(
model=model,
messages=messages,
@ -120,146 +98,46 @@ class TogetherInferenceAdapter(
logprobs=logprobs,
)
# accumulate sampling params and other options to pass to together
options = self.get_together_chat_options(request)
together_model = self.map_to_provider_model(request.model)
messages = augment_messages_for_tools(request)
if not request.stream:
# TODO: might need to add back an async here
r = client.chat.completions.create(
model=together_model,
messages=self._messages_to_together_messages(messages),
stream=False,
**options,
)
stop_reason = None
if r.choices[0].finish_reason:
if (
r.choices[0].finish_reason == "stop"
or r.choices[0].finish_reason == "eos"
):
stop_reason = StopReason.end_of_turn
elif r.choices[0].finish_reason == "length":
stop_reason = StopReason.out_of_tokens
completion_message = self.formatter.decode_assistant_message_from_content(
r.choices[0].message.content, stop_reason
)
yield ChatCompletionResponse(
completion_message=completion_message,
logprobs=None,
)
if stream:
return self._stream_chat_completion(request, client)
else:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.start,
delta="",
)
)
return self._nonstream_chat_completion(request, client)
buffer = ""
ipython = False
stop_reason = None
async def _nonstream_chat_completion(
self, request: ChatCompletionRequest, client: Together
) -> ChatCompletionResponse:
params = self._get_params(request)
r = client.completions.create(**params)
return process_chat_completion_response(request, r, self.formatter)
for chunk in client.chat.completions.create(
model=together_model,
messages=self._messages_to_together_messages(messages),
stream=True,
**options,
):
if finish_reason := chunk.choices[0].finish_reason:
if stop_reason is None and finish_reason in ["stop", "eos"]:
stop_reason = StopReason.end_of_turn
elif stop_reason is None and finish_reason == "length":
stop_reason = StopReason.out_of_tokens
break
async def _stream_chat_completion(
self, request: ChatCompletionRequest, client: Together
) -> AsyncGenerator:
params = self._get_params(request)
text = chunk.choices[0].delta.content
if text is None:
continue
# if we shift to TogetherAsyncClient, we won't need this wrapper
async def _to_async_generator():
s = client.completions.create(**params)
for chunk in s:
yield chunk
# check if its a tool call ( aka starts with <|python_tag|> )
if not ipython and text.startswith("<|python_tag|>"):
ipython = True
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content="",
parse_status=ToolCallParseStatus.started,
),
)
)
buffer += text
continue
stream = _to_async_generator()
async for chunk in process_chat_completion_stream_response(
request, stream, self.formatter
):
yield chunk
if ipython:
if text == "<|eot_id|>":
stop_reason = StopReason.end_of_turn
text = ""
continue
elif text == "<|eom_id|>":
stop_reason = StopReason.end_of_message
text = ""
continue
def _get_params(self, request: ChatCompletionRequest) -> dict:
return {
"model": self.map_to_provider_model(request.model),
"prompt": chat_completion_request_to_prompt(request, self.formatter),
"stream": request.stream,
**get_sampling_options(request),
}
buffer += text
delta = ToolCallDelta(
content=text,
parse_status=ToolCallParseStatus.in_progress,
)
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=delta,
stop_reason=stop_reason,
)
)
else:
buffer += text
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=text,
stop_reason=stop_reason,
)
)
# parse tool calls and report errors
message = self.formatter.decode_assistant_message_from_content(
buffer, stop_reason
)
parsed_tool_calls = len(message.tool_calls) > 0
if ipython and not parsed_tool_calls:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content="",
parse_status=ToolCallParseStatus.failure,
),
stop_reason=stop_reason,
)
)
for tool_call in message.tool_calls:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content=tool_call,
parse_status=ToolCallParseStatus.success,
),
stop_reason=stop_reason,
)
)
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.complete,
delta="",
stop_reason=stop_reason,
)
)
async def embeddings(
self,
model: str,
contents: List[InterleavedTextMedia],
) -> EmbeddingsResponse:
raise NotImplementedError()