diff --git a/docs/_static/llama-stack-spec.html b/docs/_static/llama-stack-spec.html
index 68f27ef3b..1a8169090 100644
--- a/docs/_static/llama-stack-spec.html
+++ b/docs/_static/llama-stack-spec.html
@@ -9321,11 +9321,21 @@
"type": "object",
"properties": {
"tool_responses": {
- "type": "array",
- "items": {
- "$ref": "#/components/schemas/ToolResponseMessage"
- },
- "description": "The tool call responses to resume the turn with."
+ "oneOf": [
+ {
+ "type": "array",
+ "items": {
+ "$ref": "#/components/schemas/ToolResponse"
+ }
+ },
+ {
+ "type": "array",
+ "items": {
+ "$ref": "#/components/schemas/ToolResponseMessage"
+ }
+ }
+ ],
+ "description": "The tool call responses to resume the turn with. NOTE: ToolResponseMessage will be deprecated. Use ToolResponse."
},
"stream": {
"type": "boolean",
diff --git a/docs/_static/llama-stack-spec.yaml b/docs/_static/llama-stack-spec.yaml
index bb994b0c5..d6001c00d 100644
--- a/docs/_static/llama-stack-spec.yaml
+++ b/docs/_static/llama-stack-spec.yaml
@@ -6287,11 +6287,16 @@ components:
type: object
properties:
tool_responses:
- type: array
- items:
- $ref: '#/components/schemas/ToolResponseMessage'
+ oneOf:
+ - type: array
+ items:
+ $ref: '#/components/schemas/ToolResponse'
+ - type: array
+ items:
+ $ref: '#/components/schemas/ToolResponseMessage'
description: >-
- The tool call responses to resume the turn with.
+ The tool call responses to resume the turn with. NOTE: ToolResponseMessage
+ will be deprecated. Use ToolResponse.
stream:
type: boolean
description: Whether to stream the response.
diff --git a/llama_stack/apis/agents/agents.py b/llama_stack/apis/agents/agents.py
index def61b617..dbe35ac09 100644
--- a/llama_stack/apis/agents/agents.py
+++ b/llama_stack/apis/agents/agents.py
@@ -353,7 +353,7 @@ class AgentTurnResumeRequest(BaseModel):
agent_id: str
session_id: str
turn_id: str
- tool_responses: List[ToolResponseMessage]
+ tool_responses: Union[List[ToolResponse], List[ToolResponseMessage]]
stream: Optional[bool] = False
@@ -432,7 +432,7 @@ class Agents(Protocol):
agent_id: str,
session_id: str,
turn_id: str,
- tool_responses: List[ToolResponseMessage],
+ tool_responses: Union[List[ToolResponse], List[ToolResponseMessage]],
stream: Optional[bool] = False,
) -> Union[Turn, AsyncIterator[AgentTurnResponseStreamChunk]]:
"""Resume an agent turn with executed tool call responses.
@@ -443,6 +443,7 @@ class Agents(Protocol):
:param session_id: The ID of the session to resume.
:param turn_id: The ID of the turn to resume.
:param tool_responses: The tool call responses to resume the turn with.
+ NOTE: ToolResponseMessage will be deprecated. Use ToolResponse.
:param stream: Whether to stream the response.
:returns: A Turn object if stream is False, otherwise an AsyncIterator of AgentTurnResponseStreamChunk objects.
"""
diff --git a/llama_stack/providers/inline/agents/meta_reference/agent_instance.py b/llama_stack/providers/inline/agents/meta_reference/agent_instance.py
index f868bee2c..720e73503 100644
--- a/llama_stack/providers/inline/agents/meta_reference/agent_instance.py
+++ b/llama_stack/providers/inline/agents/meta_reference/agent_instance.py
@@ -216,13 +216,25 @@ class ChatAgent(ShieldRunnerMixin):
steps = []
messages = await self.get_messages_from_turns(turns)
if is_resume:
- messages.extend(request.tool_responses)
+ if isinstance(request.tool_responses[0], ToolResponseMessage):
+ tool_response_messages = request.tool_responses
+ tool_responses = [
+ ToolResponse(call_id=x.call_id, tool_name=x.tool_name, content=x.content)
+ for x in request.tool_responses
+ ]
+ else:
+ tool_response_messages = [
+ ToolResponseMessage(call_id=x.call_id, tool_name=x.tool_name, content=x.content)
+ for x in request.tool_responses
+ ]
+ tool_responses = request.tool_responses
+ messages.extend(tool_response_messages)
last_turn = turns[-1]
last_turn_messages = self.turn_to_messages(last_turn)
last_turn_messages = [
x for x in last_turn_messages if isinstance(x, UserMessage) or isinstance(x, ToolResponseMessage)
]
- last_turn_messages.extend(request.tool_responses)
+ last_turn_messages.extend(tool_response_messages)
# get steps from the turn
steps = last_turn.steps
@@ -238,14 +250,7 @@ class ChatAgent(ShieldRunnerMixin):
step_id=(in_progress_tool_call_step.step_id if in_progress_tool_call_step else str(uuid.uuid4())),
turn_id=request.turn_id,
tool_calls=(in_progress_tool_call_step.tool_calls if in_progress_tool_call_step else []),
- tool_responses=[
- ToolResponse(
- call_id=x.call_id,
- tool_name=x.tool_name,
- content=x.content,
- )
- for x in request.tool_responses
- ],
+ tool_responses=tool_responses,
completed_at=now,
started_at=(in_progress_tool_call_step.started_at if in_progress_tool_call_step else now),
)
diff --git a/llama_stack/providers/inline/agents/meta_reference/agents.py b/llama_stack/providers/inline/agents/meta_reference/agents.py
index db33bca4a..a46fa8eb7 100644
--- a/llama_stack/providers/inline/agents/meta_reference/agents.py
+++ b/llama_stack/providers/inline/agents/meta_reference/agents.py
@@ -27,6 +27,7 @@ from llama_stack.apis.agents import (
from llama_stack.apis.inference import (
Inference,
ToolConfig,
+ ToolResponse,
ToolResponseMessage,
UserMessage,
)
@@ -168,7 +169,7 @@ class MetaReferenceAgentsImpl(Agents):
agent_id: str,
session_id: str,
turn_id: str,
- tool_responses: List[ToolResponseMessage],
+ tool_responses: Union[List[ToolResponse], List[ToolResponseMessage]],
stream: Optional[bool] = False,
) -> AsyncGenerator:
request = AgentTurnResumeRequest(
diff --git a/tests/integration/agents/test_agents.py b/tests/integration/agents/test_agents.py
index f221582c8..277b37448 100644
--- a/tests/integration/agents/test_agents.py
+++ b/tests/integration/agents/test_agents.py
@@ -4,6 +4,7 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
+from typing import Any, Dict
from uuid import uuid4
import pytest
@@ -40,6 +41,25 @@ def get_boiling_point(liquid_name: str, celcius: bool = True) -> int:
return -1
+@client_tool
+def get_boiling_point_with_metadata(liquid_name: str, celcius: bool = True) -> Dict[str, Any]:
+ """
+ Returns the boiling point of a liquid in Celcius or Fahrenheit
+
+ :param liquid_name: The name of the liquid
+ :param celcius: Whether to return the boiling point in Celcius
+ :return: The boiling point of the liquid in Celcius or Fahrenheit
+ """
+ if liquid_name.lower() == "polyjuice":
+ if celcius:
+ temp = -100
+ else:
+ temp = -212
+ else:
+ temp = -1
+ return {"content": temp, "metadata": {"source": "https://www.google.com"}}
+
+
@pytest.fixture(scope="session")
def agent_config(llama_stack_client_with_mocked_inference, text_model_id):
available_shields = [shield.identifier for shield in llama_stack_client_with_mocked_inference.shields.list()]
@@ -551,8 +571,9 @@ def test_rag_and_code_agent(llama_stack_client_with_mocked_inference, agent_conf
assert expected_kw in response.output_message.content.lower()
-def test_create_turn_response(llama_stack_client_with_mocked_inference, agent_config):
- client_tool = get_boiling_point
+@pytest.mark.parametrize("client_tools", [(get_boiling_point, False), (get_boiling_point_with_metadata, True)])
+def test_create_turn_response(llama_stack_client_with_mocked_inference, agent_config, client_tools):
+ client_tool, expectes_metadata = client_tools
agent_config = {
**agent_config,
"input_shields": [],
@@ -577,7 +598,9 @@ def test_create_turn_response(llama_stack_client_with_mocked_inference, agent_co
assert len(steps) == 3
assert steps[0].step_type == "inference"
assert steps[1].step_type == "tool_execution"
- assert steps[1].tool_calls[0].tool_name == "get_boiling_point"
+ assert steps[1].tool_calls[0].tool_name.startswith("get_boiling_point")
+ if expectes_metadata:
+ assert steps[1].tool_responses[0].metadata["source"] == "https://www.google.com"
assert steps[2].step_type == "inference"
last_step_completed_at = None
diff --git a/tests/integration/fixtures/recorded_responses/chat_completion.json b/tests/integration/fixtures/recorded_responses/chat_completion.json
index 4b0d9b1c1..9e70e3df0 100644
--- a/tests/integration/fixtures/recorded_responses/chat_completion.json
+++ b/tests/integration/fixtures/recorded_responses/chat_completion.json
@@ -102,7 +102,22 @@
{
"event": {
"delta": {
- "text": " boiling point of polyjuice is -100 degrees Fahrenheit.",
+ "text": " boiling point of polyjuice is -100 degrees",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " Fahrenheit.",
"type": "text"
},
"event_type": {
@@ -312,7 +327,7 @@
{
"event": {
"delta": {
- "text": "type\": \"function\", \"name\": \"get_boiling_point",
+ "text": "type\": \"function\", \"name\": \"",
"type": "text"
},
"event_type": {
@@ -327,7 +342,7 @@
{
"event": {
"delta": {
- "text": "\", \"parameters\": {\"liquid_name\": \"polyjuice\",",
+ "text": "get_boiling_point\", \"parameters",
"type": "text"
},
"event_type": {
@@ -342,7 +357,22 @@
{
"event": {
"delta": {
- "text": " \"celcius\": \"false\"}}",
+ "text": "\": {\"liquid_name\": \"polyjuice\", \"",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "celcius\": \"false\"}}",
"type": "text"
},
"event_type": {
@@ -366,7 +396,7 @@
"celcius": "false",
"liquid_name": "polyjuice"
},
- "call_id": "b9ded2e6-bef1-40bc-8a5b-a8c1018d0ba2",
+ "call_id": "00c0968b-d7d4-450d-a6ff-03d64ae9f772",
"tool_name": "get_boiling_point"
},
"type": "tool_call"
@@ -590,7 +620,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": "{\"type\": \"function\", \"",
+ "tool_call": "{\"type\": \"function\", \"name\": \"get_boiling",
"type": "tool_call"
},
"event_type": {
@@ -609,7 +639,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": "name\": \"get_boiling_point\",",
+ "tool_call": "_point\", \"parameters\": {\"liquid_name\": \"polyjuice",
"type": "tool_call"
},
"event_type": {
@@ -628,45 +658,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": " \"parameters\": {\"liquid_name\": \"polyju",
- "type": "tool_call"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "parse_status": {
- "__enum__": "ToolCallParseStatus",
- "value": "in_progress"
- },
- "tool_call": "ice\", \"celcius\":",
- "type": "tool_call"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "parse_status": {
- "__enum__": "ToolCallParseStatus",
- "value": "in_progress"
- },
- "tool_call": " \"true\"}}",
+ "tool_call": "\", \"celcius\": \"true\"}}",
"type": "tool_call"
},
"event_type": {
@@ -690,7 +682,7 @@
"celcius": "true",
"liquid_name": "polyjuice"
},
- "call_id": "98c011b5-f5de-416e-9a06-c2e3d0fa5581",
+ "call_id": "eda85f20-da80-4e11-a0e4-3849159ae70f",
"tool_name": "get_boiling_point"
},
"type": "tool_call"
@@ -831,7 +823,7 @@
{
"event": {
"delta": {
- "text": " boiling point of polyjuice is -100\u00b0C",
+ "text": " boiling point of polyjuice is -100\u00b0C.",
"type": "text"
},
"event_type": {
@@ -846,7 +838,60 @@
{
"event": {
"delta": {
- "text": ".",
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "complete"
+ },
+ "logprobs": null,
+ "stop_reason": {
+ "__enum__": "StopReason",
+ "value": "end_of_turn"
+ }
+ },
+ "metrics": null
+ }
+ ],
+ "type": "generator"
+ },
+ "('meta-llama/Llama-3.1-8B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='Call get_boiling_point and answer What is the boiling point of polyjuice?', context=None), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name='get_boiling_point_with_metadata', arguments={'liquid_name': 'polyjuice', 'celcius': 'true'})]), ToolResponseMessage(role='tool', call_id='', tool_name='get_boiling_point_with_metadata', content='-100')])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=None, system_message_behavior=)), ('tool_prompt_format', None), ('tools', [ToolDefinition(tool_name='get_boiling_point_with_metadata', description='Returns the boiling point of a liquid in Celcius or Fahrenheit', parameters={'liquid_name': ToolParamDefinition(param_type='string', description='The name of the liquid', required=True, default=None), 'celcius': ToolParamDefinition(param_type='bool', description='Whether to return the boiling point in Celcius', required=False, default=True)})])]": {
+ "chunks": [
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "start"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "The",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " boiling point of polyjuice is -100\u00b0C.",
"type": "text"
},
"event_type": {
@@ -1103,7 +1148,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": "\": {\"liquid_name\": \"polyjuice\", \"celci",
+ "tool_call": "\": {\"liquid_name\": \"poly",
"type": "tool_call"
},
"event_type": {
@@ -1122,7 +1167,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": "us\": \"true\"}}",
+ "tool_call": "juice\", \"celcius\": \"true\"}}",
"type": "tool_call"
},
"event_type": {
@@ -1146,7 +1191,7 @@
"celcius": "true",
"liquid_name": "polyjuice"
},
- "call_id": "15326d2e-d284-4c7e-86b1-5bfbba74a914",
+ "call_id": "8b8b3ad5-5e47-4f56-a823-e2d82fa72d9c",
"tool_name": "get_boiling_point"
},
"type": "tool_call"
@@ -1184,6 +1229,168 @@
],
"type": "generator"
},
+ "('meta-llama/Llama-3.1-8B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='Call get_boiling_point and answer What is the boiling point of polyjuice?', context=None)])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=None, system_message_behavior=)), ('tool_prompt_format', None), ('tools', [ToolDefinition(tool_name='get_boiling_point_with_metadata', description='Returns the boiling point of a liquid in Celcius or Fahrenheit', parameters={'liquid_name': ToolParamDefinition(param_type='string', description='The name of the liquid', required=True, default=None), 'celcius': ToolParamDefinition(param_type='bool', description='Whether to return the boiling point in Celcius', required=False, default=True)})])]": {
+ "chunks": [
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "start"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "started"
+ },
+ "tool_call": "",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "{\"type\": \"function\", \"name\": \"",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "get_boiling_point_with_metadata\", \"",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "parameters\": {\"liquid_name\": \"poly",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "juice\", \"celcius\": \"true\"}}",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "succeeded"
+ },
+ "tool_call": {
+ "arguments": {
+ "celcius": "true",
+ "liquid_name": "polyjuice"
+ },
+ "call_id": "3438f2d7-895f-4a94-8e1f-c2f01860ce88",
+ "tool_name": "get_boiling_point_with_metadata"
+ },
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": {
+ "__enum__": "StopReason",
+ "value": "end_of_turn"
+ }
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "complete"
+ },
+ "logprobs": null,
+ "stop_reason": {
+ "__enum__": "StopReason",
+ "value": "end_of_turn"
+ }
+ },
+ "metrics": null
+ }
+ ],
+ "type": "generator"
+ },
"('meta-llama/Llama-3.1-8B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='Give me a sentence that contains the word: hello', context=None)])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=None, system_message_behavior=)), ('tool_prompt_format', None), ('tools', [])]": {
"chunks": [
{
@@ -1219,7 +1426,22 @@
{
"event": {
"delta": {
- "text": " customer smiled and said \"hello\" to the friendly store clerk.",
+ "text": " customer smiled and said \"hello\" to the friendly store clerk",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": ".",
"type": "text"
},
"event_type": {
@@ -1673,7 +1895,7 @@
{
"event": {
"delta": {
- "text": " error message indicates that the `bwrap.core` module is",
+ "text": " error message indicates that the `b",
"type": "text"
},
"event_type": {
@@ -1688,7 +1910,7 @@
{
"event": {
"delta": {
- "text": " not found. This is likely because the",
+ "text": "wrap.core` module is not found",
"type": "text"
},
"event_type": {
@@ -1703,7 +1925,7 @@
{
"event": {
"delta": {
- "text": " `bwrap` package is not installed. To fix this,",
+ "text": ". This is likely because the `",
"type": "text"
},
"event_type": {
@@ -1718,7 +1940,7 @@
{
"event": {
"delta": {
- "text": " you can install the `bwrap` package",
+ "text": "bwrap` package is not installed",
"type": "text"
},
"event_type": {
@@ -1733,7 +1955,7 @@
{
"event": {
"delta": {
- "text": " using pip:\n\n```\npip install bwrap",
+ "text": ". To fix this, you can install the",
"type": "text"
},
"event_type": {
@@ -1748,7 +1970,7 @@
{
"event": {
"delta": {
- "text": "\n```\n\nHowever, if you don't",
+ "text": " `bwrap` package using pip:\n\n```\npip install",
"type": "text"
},
"event_type": {
@@ -1763,7 +1985,7 @@
{
"event": {
"delta": {
- "text": " have permission to install packages, you can use",
+ "text": " bwrap\n```\n\nHowever, if",
"type": "text"
},
"event_type": {
@@ -1778,7 +2000,7 @@
{
"event": {
"delta": {
- "text": " the `knowledge_search` function to get information about",
+ "text": " you don't have the `bwrap` package installed,",
"type": "text"
},
"event_type": {
@@ -1793,7 +2015,7 @@
{
"event": {
"delta": {
- "text": " the CSV file instead:\n\n```\n{\n ",
+ "text": " you can't use the `",
"type": "text"
},
"event_type": {
@@ -1808,7 +2030,7 @@
{
"event": {
"delta": {
- "text": " \"type\": \"function\",\n \"name\": \"",
+ "text": "b",
"type": "text"
},
"event_type": {
@@ -1823,7 +2045,7 @@
{
"event": {
"delta": {
- "text": "knowledge_search\",\n \"parameters\": {\n",
+ "text": "wrap.core` module.",
"type": "text"
},
"event_type": {
@@ -1838,7 +2060,7 @@
{
"event": {
"delta": {
- "text": " \"query\": \"describe a csv file\"\n }\n",
+ "text": " In this case, you can",
"type": "text"
},
"event_type": {
@@ -1853,7 +2075,7 @@
{
"event": {
"delta": {
- "text": "}\n```\n\nThis will return a description of",
+ "text": " try to load the CSV file using the `p",
"type": "text"
},
"event_type": {
@@ -1868,7 +2090,142 @@
{
"event": {
"delta": {
- "text": " the CSV file.",
+ "text": "andas` library directly.\n\nHere is the corrected code:\n\n```",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "python\nimport pandas as pd\ndf = pd.read_csv",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "(\"/var/folders/cz/vyh7y1d11x",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "g881lsxsshnc5c000",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "0gn/T/tmp8d5c",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "8spc/zOZSE5",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "zcinflation.csv\")\nprint(df.head())\nprint(df.info())\n",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "print(df.describe())\n```\n\nThis code will",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " load the CSV file and print the first few rows, information about",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " the data, and summary statistics.",
"type": "text"
},
"event_type": {
@@ -2162,7 +2519,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": "import pandas as pd\ndf = pd.read",
+ "tool_call": "import pandas as pd\ndf = pd.read_csv(\"/var/folders/c",
"type": "tool_call"
},
"event_type": {
@@ -2181,7 +2538,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": "_csv(\"/var/folders/cz/vyh7y1d11",
+ "tool_call": "z/vyh7y1d11xg881lsxsshnc",
"type": "tool_call"
},
"event_type": {
@@ -2200,7 +2557,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": "xg881lsxsshnc5c0000gn/T/tmpc_",
+ "tool_call": "5c0000gn/T/tmp8d5c8spc",
"type": "tool_call"
},
"event_type": {
@@ -2219,7 +2576,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": "ozqkdv/GwQ6oJB4inflation",
+ "tool_call": "/zOZSE5zcinflation.csv\")\nprint(df.head())\nprint",
"type": "tool_call"
},
"event_type": {
@@ -2238,26 +2595,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": ".csv\")\nprint(df.head())\nprint(df.info())\nprint(df.describe",
- "type": "tool_call"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "parse_status": {
- "__enum__": "ToolCallParseStatus",
- "value": "in_progress"
- },
- "tool_call": "())",
+ "tool_call": "(df.info())\nprint(df.describe())",
"type": "tool_call"
},
"event_type": {
@@ -2278,9 +2616,9 @@
},
"tool_call": {
"arguments": {
- "code": "import pandas as pd\ndf = pd.read_csv(\"/var/folders/cz/vyh7y1d11xg881lsxsshnc5c0000gn/T/tmpc_ozqkdv/GwQ6oJB4inflation.csv\")\nprint(df.head())\nprint(df.info())\nprint(df.describe())"
+ "code": "import pandas as pd\ndf = pd.read_csv(\"/var/folders/cz/vyh7y1d11xg881lsxsshnc5c0000gn/T/tmp8d5c8spc/zOZSE5zcinflation.csv\")\nprint(df.head())\nprint(df.info())\nprint(df.describe())"
},
- "call_id": "551648f3-c903-44ef-84ae-0f1dcbaaa68f",
+ "call_id": "09b4d9a1-8ee4-4de4-a5a3-91cad464e668",
"tool_name": {
"__enum__": "BuiltinTool",
"value": "code_interpreter"
@@ -2523,6 +2861,592 @@
],
"type": "generator"
},
+ "('meta-llama/Llama-3.1-8B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='Here is a csv file, can you describe it?', context=None), ToolResponseMessage(role='tool', call_id='', tool_name=, content=[TextContentItem(type='text', text='# User provided a file accessible to you at \"\"\\nYou can use code_interpreter to load and inspect it.')]), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name=, arguments={'code': 'import pandas as pd\\nimport code_interpreter\\n\\n# Load the CSV file\\ndf = pd.read_csv(\"\")\\n\\n# Print the first few rows of the dataframe\\nprint(df.head())\\n\\n# Print the data types of each column\\nprint(df.dtypes)\\n\\n# Print the summary statistics of the dataframe\\nprint(df.describe())'})]), ToolResponseMessage(role='tool', call_id='', tool_name=, content=\"completed\\n[stderr]\\nTraceback (most recent call last):\\n line 5, in \\n from bwrap.core import main\\nModuleNotFoundError: No module named 'bwrap.core'\\n[/stderr]\"), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name=, arguments={'code': 'import pandas as pd\\nimport code_interpreter\\n\\n# Load the CSV file\\ndf = pd.read_csv(\"\")\\n\\n# Print the first few rows of the dataframe\\nprint(df.head())\\n\\n# Print the data types of each column\\nprint(df.dtypes)\\n\\n# Print the summary statistics of the dataframe\\nprint(df.describe())'})]), ToolResponseMessage(role='tool', call_id='', tool_name=, content=\"completed\\n[stderr]\\nTraceback (most recent call last):\\n line 5, in \\n from bwrap.core import main\\nModuleNotFoundError: No module named 'bwrap.core'\\n[/stderr]\")])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=None, system_message_behavior=)), ('tool_prompt_format', None), ('tools', [ToolDefinition(tool_name='knowledge_search', description='Search for information in a database.', parameters={'query': ToolParamDefinition(param_type='string', description='The query to search for. Can be a natural language sentence or keywords.', required=True, default=None)}), ToolDefinition(tool_name=, description='Execute code', parameters={'code': ToolParamDefinition(param_type='string', description='The code to execute', required=True, default=None)})])]": {
+ "chunks": [
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "start"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "I",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "'m unable to access the file you provided. However, I can",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " suggest a general approach to describe a CSV file",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": ".\n\nYou can use the pandas",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " library in Python to load and inspect the CSV",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " file. Here's a general outline of the",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " steps you can follow:\n\n1. Import the pandas library:",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " `import pandas as pd`\n2. Load the CSV file",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " into a dataframe: `df = pd.read_csv('file.csv",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "')`\n3. Print the first few rows",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " of the dataframe: `print(df.head())`\n4",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": ". Print the data types of each column",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": ": `print(df.dtypes)`\n5",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": ". Print the summary statistics of the dataframe:",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " `print(df.describe())`\n\nThis will give you a",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " general idea of the structure and content of the CSV file.",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " If you need more specific information, you can use other pandas functions",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " to inspect the dataframe.",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "complete"
+ },
+ "logprobs": null,
+ "stop_reason": {
+ "__enum__": "StopReason",
+ "value": "end_of_turn"
+ }
+ },
+ "metrics": null
+ }
+ ],
+ "type": "generator"
+ },
+ "('meta-llama/Llama-3.1-8B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='Here is a csv file, can you describe it?', context=None), ToolResponseMessage(role='tool', call_id='', tool_name=, content=[TextContentItem(type='text', text='# User provided a file accessible to you at \"\"\\nYou can use code_interpreter to load and inspect it.')]), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name=, arguments={'code': 'import pandas as pd\\nimport code_interpreter\\n\\n# Load the CSV file\\ndf = pd.read_csv(\"\")\\n\\n# Print the first few rows of the dataframe\\nprint(df.head())\\n\\n# Print the data types of each column\\nprint(df.dtypes)\\n\\n# Print the summary statistics of the dataframe\\nprint(df.describe())'})]), ToolResponseMessage(role='tool', call_id='', tool_name=, content=\"completed\\n[stderr]\\nTraceback (most recent call last):\\n line 5, in \\n from bwrap.core import main\\nModuleNotFoundError: No module named 'bwrap.core'\\n[/stderr]\")])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=None, system_message_behavior=)), ('tool_prompt_format', None), ('tools', [ToolDefinition(tool_name='knowledge_search', description='Search for information in a database.', parameters={'query': ToolParamDefinition(param_type='string', description='The query to search for. Can be a natural language sentence or keywords.', required=True, default=None)}), ToolDefinition(tool_name=, description='Execute code', parameters={'code': ToolParamDefinition(param_type='string', description='The code to execute', required=True, default=None)})])]": {
+ "chunks": [
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "start"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "started"
+ },
+ "tool_call": "",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "import pandas as pd\nimport code_interpreter\n\n#",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": " Load the CSV file\ndf = pd.read_csv(\"/",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "var/folders/cz/vyh7y",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "1d11xg881lsxsshnc5c000",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "0gn/T/tmpjxdo91ce/g1r3",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "WGZRinflation.csv\")\n\n# Print the first few rows of",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": " the dataframe\nprint(df.head())\n\n#",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": " Print the data types of each column",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "\nprint(df.dtypes)\n\n# Print the summary statistics",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": " of the dataframe\nprint(df.describe())",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "succeeded"
+ },
+ "tool_call": {
+ "arguments": {
+ "code": "import pandas as pd\nimport code_interpreter\n\n# Load the CSV file\ndf = pd.read_csv(\"/var/folders/cz/vyh7y1d11xg881lsxsshnc5c0000gn/T/tmpjxdo91ce/g1r3WGZRinflation.csv\")\n\n# Print the first few rows of the dataframe\nprint(df.head())\n\n# Print the data types of each column\nprint(df.dtypes)\n\n# Print the summary statistics of the dataframe\nprint(df.describe())"
+ },
+ "call_id": "fbc1b233-207f-4f7b-8298-8d72a86d6f2c",
+ "tool_name": {
+ "__enum__": "BuiltinTool",
+ "value": "code_interpreter"
+ }
+ },
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": {
+ "__enum__": "StopReason",
+ "value": "end_of_turn"
+ }
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "complete"
+ },
+ "logprobs": null,
+ "stop_reason": {
+ "__enum__": "StopReason",
+ "value": "end_of_turn"
+ }
+ },
+ "metrics": null
+ }
+ ],
+ "type": "generator"
+ },
"('meta-llama/Llama-3.1-8B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='Here is a csv file, can you describe it?', context=None), ToolResponseMessage(role='tool', call_id='', tool_name=, content=[TextContentItem(type='text', text='# User provided a file accessible to you at \"\"\\nYou can use code_interpreter to load and inspect it.')])])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=None, system_message_behavior=)), ('tool_prompt_format', None), ('tools', [ToolDefinition(tool_name='knowledge_search', description='Search for information in a database.', parameters={'query': ToolParamDefinition(param_type='string', description='The query to search for. Can be a natural language sentence or keywords.', required=True, default=None)}), ToolDefinition(tool_name=, description='Execute code', parameters={'code': ToolParamDefinition(param_type='string', description='The code to execute', required=True, default=None)})])]": {
"chunks": [
{
@@ -2566,7 +3490,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": "import pandas as pd\ndf = pd.read",
+ "tool_call": "import pandas as pd\ndf = pd.read_csv",
"type": "tool_call"
},
"event_type": {
@@ -2585,7 +3509,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": "_csv(\"/var/folders/cz/vyh",
+ "tool_call": "(\"/var/folders/cz/vyh7y1d11x",
"type": "tool_call"
},
"event_type": {
@@ -2604,7 +3528,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": "7y1d11xg881lsxsshnc5c",
+ "tool_call": "g881lsxsshnc5c0000gn/T",
"type": "tool_call"
},
"event_type": {
@@ -2623,7 +3547,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": "0000gn/T/tmpc_ozqkdv/Gw",
+ "tool_call": "/tmp8d5c8spc/zOZSE5zcin",
"type": "tool_call"
},
"event_type": {
@@ -2642,26 +3566,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": "Q6oJB4inflation.csv\")\n",
- "type": "tool_call"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "parse_status": {
- "__enum__": "ToolCallParseStatus",
- "value": "in_progress"
- },
- "tool_call": "print(df.head())",
+ "tool_call": "flation.csv\")\nprint(df.head())",
"type": "tool_call"
},
"event_type": {
@@ -2682,9 +3587,9 @@
},
"tool_call": {
"arguments": {
- "code": "import pandas as pd\ndf = pd.read_csv(\"/var/folders/cz/vyh7y1d11xg881lsxsshnc5c0000gn/T/tmpc_ozqkdv/GwQ6oJB4inflation.csv\")\nprint(df.head())"
+ "code": "import pandas as pd\ndf = pd.read_csv(\"/var/folders/cz/vyh7y1d11xg881lsxsshnc5c0000gn/T/tmp8d5c8spc/zOZSE5zcinflation.csv\")\nprint(df.head())"
},
- "call_id": "204b3ad9-ff20-4fab-a055-13da99874d88",
+ "call_id": "c19a0d1e-6b44-408f-9839-819436425778",
"tool_name": {
"__enum__": "BuiltinTool",
"value": "code_interpreter"
@@ -2927,6 +3832,555 @@
],
"type": "generator"
},
+ "('meta-llama/Llama-3.1-8B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='Here is a csv, can you describe it?', context=None), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name=, arguments={'code': 'import pandas as pd\\n# Load data\\ndf = pd.read_csv(\"\")\\n# Rows\\nprint(\"Number of rows and columns in the data:\", df.shape)\\n# Columns\\nprint(\"Columns of the data are:\", len(df.columns))\\n# Column names\\nprint(\"Columns of the data are:\", df.columns)\\n# Column dtypes\\nprint(\"Datatype of the columns are:\", df.dtypes)'})]), ToolResponseMessage(role='tool', call_id='', tool_name=, content=\"completed\\n[stderr]\\nTraceback (most recent call last):\\n line 5, in \\n from bwrap.core import main\\nModuleNotFoundError: No module named 'bwrap.core'\\n[/stderr]\"), CompletionMessage(role='assistant', content='It seems that the file \"\" does not exist. \\n\\nTo describe the csv file, you need to provide the actual file path or the file itself. If the file is too large to be uploaded, you can provide a sample of the file or the code you used to create the file. \\n\\nHere is an example of how you can describe a csv file using pandas:\\n\\n```\\nimport pandas as pd\\n# Load data\\ndf = pd.read_csv(\\'inflation.csv\\')\\n# Print the first 5 rows of the data\\nprint(df.head())\\n# Print the last 5 rows of the data\\nprint(df.tail())\\n# Print the summary statistics of the data\\nprint(df.describe())\\n# Print the data types of each column\\nprint(df.dtypes)\\n```\\n\\nThis will give you an idea of what the csv file contains.', stop_reason=, tool_calls=[]), UserMessage(role='user', content='Plot average yearly inflation as a time series', context=None), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name=, arguments={'code': \"import pandas as pd\\nimport matplotlib.pyplot as plt\\n\\n# Load data\\ndf = pd.read_csv('inflation.csv')\\n\\n# Convert 'date' column to datetime\\ndf['date'] = pd.to_datetime(df['date'])\\n\\n# Group by year and calculate average inflation\\naverage_inflation = df.groupby(df['date'].dt.year)['inflation'].mean()\\n\\n# Plot the time series\\nplt.figure(figsize=(10,6))\\nplt.plot(average_inflation.index, average_inflation.values, marker='o')\\nplt.title('Average Yearly Inflation')\\nplt.xlabel('Year')\\nplt.ylabel('Average Inflation')\\nplt.grid(True)\\nplt.show()\"})]), ToolResponseMessage(role='tool', call_id='', tool_name=, content=\"completed\\n[stderr]\\nTraceback (most recent call last):\\n line 5, in \\n from bwrap.core import main\\nModuleNotFoundError: No module named 'bwrap.core'\\n[/stderr]\")])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=None, system_message_behavior=)), ('tool_prompt_format', None), ('tools', [ToolDefinition(tool_name=, description='Execute code', parameters={'code': ToolParamDefinition(param_type='string', description='The code to execute', required=True, default=None)})])]": {
+ "chunks": [
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "start"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "This",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " code will create a line plot of the",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " average yearly inflation over time. The x-axis",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " represents the year and the y-axis represents",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " the average inflation. The plot will also",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " include a title, labels",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " for the x and y axes, and a grid to make it",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " easier to read.\n\nPlease note that you need to replace '",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "inflation.csv' with the actual path",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " to your csv file. Also, this code assumes that the csv",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " file has a column named 'date' and",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " another column named 'inflation'. If your csv file has",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " different column names, you need to adjust the code accordingly.",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "complete"
+ },
+ "logprobs": null,
+ "stop_reason": {
+ "__enum__": "StopReason",
+ "value": "end_of_turn"
+ }
+ },
+ "metrics": null
+ }
+ ],
+ "type": "generator"
+ },
+ "('meta-llama/Llama-3.1-8B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='Here is a csv, can you describe it?', context=None), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name=, arguments={'code': 'import pandas as pd\\n# Load data\\ndf = pd.read_csv(\"\")\\n# Rows\\nprint(\"Number of rows and columns in the data:\", df.shape)\\n# Columns\\nprint(\"Columns of the data are:\", len(df.columns))\\n# Column names\\nprint(\"Columns of the data are:\", df.columns)\\n# Column dtypes\\nprint(\"Datatype of the columns are:\", df.dtypes)'})]), ToolResponseMessage(role='tool', call_id='', tool_name=, content=\"completed\\n[stderr]\\nTraceback (most recent call last):\\n line 5, in \\n from bwrap.core import main\\nModuleNotFoundError: No module named 'bwrap.core'\\n[/stderr]\"), CompletionMessage(role='assistant', content='It seems that the file \"\" does not exist. \\n\\nTo describe the csv file, you need to provide the actual file path or the file itself. If the file is too large to be uploaded, you can provide a sample of the file or the code you used to create the file. \\n\\nHere is an example of how you can describe a csv file using pandas:\\n\\n```\\nimport pandas as pd\\n# Load data\\ndf = pd.read_csv(\\'inflation.csv\\')\\n# Print the first 5 rows of the data\\nprint(df.head())\\n# Print the last 5 rows of the data\\nprint(df.tail())\\n# Print the summary statistics of the data\\nprint(df.describe())\\n# Print the data types of each column\\nprint(df.dtypes)\\n```\\n\\nThis will give you an idea of what the csv file contains.', stop_reason=, tool_calls=[]), UserMessage(role='user', content='Plot average yearly inflation as a time series', context=None)])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=None, system_message_behavior=)), ('tool_prompt_format', None), ('tools', [ToolDefinition(tool_name=, description='Execute code', parameters={'code': ToolParamDefinition(param_type='string', description='The code to execute', required=True, default=None)})])]": {
+ "chunks": [
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "start"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "started"
+ },
+ "tool_call": "",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "import pandas as pd\nimport matplotlib.pyplot as plt\n\n# Load",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": " data\ndf = pd.read_csv('inflation.csv')\n\n#",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": " Convert 'date' column to datetime\ndf['",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "date'] = pd.to_datetime(df",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "['date'])\n\n# Group by year and",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": " calculate average inflation\naverage_inflation =",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": " df.groupby(df['date'].dt.year)['inflation'].mean",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "()\n\n# Plot the time series\nplt.figure(figsize=(10,",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "6))\nplt.plot(average_inflation.index, average_inflation",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": ".values, marker='o')\nplt.title('Average Yearly In",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "flation')\nplt.xlabel('Year')\nplt.ylabel('Average In",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "flation')\nplt.grid(True)\nplt.show()",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "succeeded"
+ },
+ "tool_call": {
+ "arguments": {
+ "code": "import pandas as pd\nimport matplotlib.pyplot as plt\n\n# Load data\ndf = pd.read_csv('inflation.csv')\n\n# Convert 'date' column to datetime\ndf['date'] = pd.to_datetime(df['date'])\n\n# Group by year and calculate average inflation\naverage_inflation = df.groupby(df['date'].dt.year)['inflation'].mean()\n\n# Plot the time series\nplt.figure(figsize=(10,6))\nplt.plot(average_inflation.index, average_inflation.values, marker='o')\nplt.title('Average Yearly Inflation')\nplt.xlabel('Year')\nplt.ylabel('Average Inflation')\nplt.grid(True)\nplt.show()"
+ },
+ "call_id": "6b6c11d8-75d5-4b34-b97b-ee523c7a8168",
+ "tool_name": {
+ "__enum__": "BuiltinTool",
+ "value": "code_interpreter"
+ }
+ },
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": {
+ "__enum__": "StopReason",
+ "value": "end_of_turn"
+ }
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "complete"
+ },
+ "logprobs": null,
+ "stop_reason": {
+ "__enum__": "StopReason",
+ "value": "end_of_turn"
+ }
+ },
+ "metrics": null
+ }
+ ],
+ "type": "generator"
+ },
"('meta-llama/Llama-3.1-8B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='Here is a csv, can you describe it?', context=None), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name=, arguments={'code': 'import pandas as pd\\n# Load data\\ndf = pd.read_csv(\"\")\\n# Rows\\nprint(\"Number of rows and columns in the data:\", df.shape)\\n# Columns\\nprint(\"Columns of the data are:\", len(df.columns))\\n# Column names\\nprint(\"Columns of the data are:\", df.columns)\\n# Column dtypes\\nprint(\"Datatype of the columns are:\", df.dtypes)'})]), ToolResponseMessage(role='tool', call_id='', tool_name=, content=\"completed\\n[stderr]\\nTraceback (most recent call last):\\n line 5, in \\n from bwrap.core import main\\nModuleNotFoundError: No module named 'bwrap.core'\\n[/stderr]\"), CompletionMessage(role='assistant', content='It seems that the file \"\" does not exist. \\n\\nTo describe the csv file, you need to provide the actual file path or the file itself. If you are running this code in a notebook, you can use the `upload` button to upload the file. If you are running this code in a script, you need to provide the file path.\\n\\nHere is an example of how you can describe the csv file if you have it in the same directory as your script:\\n\\n```python\\nimport pandas as pd\\n\\n# Load data\\ndf = pd.read_csv(\\'inflation.csv\\')\\n\\n# Print summary of the data\\nprint(df.head()) # Print the first few rows of the data\\nprint(df.info()) # Print information about the data\\nprint(df.describe()) # Print summary statistics about the data\\n```\\n\\nThis will print the first few rows of the data, information about the data, and summary statistics about the data.', stop_reason=, tool_calls=[]), UserMessage(role='user', content='Plot average yearly inflation as a time series', context=None), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name=, arguments={'code': \"import pandas as pd\\nimport matplotlib.pyplot as plt\\n\\n# Load data\\ndf = pd.read_csv('inflation.csv')\\n\\n# Convert date column to datetime\\ndf['date'] = pd.to_datetime(df['date'])\\n\\n# Group by year and calculate average inflation\\naverage_inflation = df.groupby(df['date'].dt.year)['inflation'].mean()\\n\\n# Plot time series\\nplt.figure(figsize=(10,6))\\nplt.plot(average_inflation.index, average_inflation.values, marker='o')\\nplt.title('Average Yearly Inflation')\\nplt.xlabel('Year')\\nplt.ylabel('Average Inflation')\\nplt.grid(True)\\nplt.show()\"})]), ToolResponseMessage(role='tool', call_id='', tool_name=, content=\"completed\\n[stderr]\\nTraceback (most recent call last):\\n line 5, in \\n from bwrap.core import main\\nModuleNotFoundError: No module named 'bwrap.core'\\n[/stderr]\")])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=None, system_message_behavior=)), ('tool_prompt_format', None), ('tools', [ToolDefinition(tool_name=, description='Execute code', parameters={'code': ToolParamDefinition(param_type='string', description='The code to execute', required=True, default=None)})])]": {
"chunks": [
{
@@ -4205,7 +5659,7 @@
],
"type": "generator"
},
- "('meta-llama/Llama-3.1-8B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='Here is a csv, can you describe it?', context=None), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name=, arguments={'code': 'import pandas as pd\\n# Load data\\ndf = pd.read_csv(\"\")\\n# Rows\\nprint(\"Number of rows and columns in the data:\", df.shape)\\n# Columns\\nprint(\"Columns of the data are:\", len(df.columns))\\n# Column names\\nprint(\"Columns of the data are:\", df.columns)\\n# Column dtypes\\nprint(\"Datatype of the columns are:\", df.dtypes)'})]), ToolResponseMessage(role='tool', call_id='', tool_name=, content=\"completed\\n[stderr]\\nTraceback (most recent call last):\\n line 5, in \\n from bwrap.core import main\\nModuleNotFoundError: No module named 'bwrap.core'\\n[/stderr]\"), CompletionMessage(role='assistant', content='It seems that the file \"\" does not exist. \\n\\nTo describe the csv file, you need to provide the actual file path or the file itself. If you are using a remote server, you can use the `requests` library to download the file and then load it into a pandas dataframe. \\n\\nHere is an example of how you can do it:\\n\\n```\\nimport pandas as pd\\nimport requests\\n\\n# Download the csv file\\nurl = \"https://example.com/your_file.csv\"\\nresponse = requests.get(url)\\n\\n# Load the csv file into a pandas dataframe\\ndf = pd.read_csv(response.content)\\n\\n# Print the description of the dataframe\\nprint(df.describe())\\n```\\n\\nPlease replace the `url` variable with the actual URL of your csv file. \\n\\nIf you are using a local file, you can simply use the `pd.read_csv()` function with the file path:\\n\\n```\\nimport pandas as pd\\n\\n# Load the csv file into a pandas dataframe\\ndf = pd.read_csv(\\'your_file.csv\\')\\n\\n# Print the description of the dataframe\\nprint(df.describe())\\n```\\n\\nPlease replace `\\'your_file.csv\\'` with the actual path to your csv file.', stop_reason=, tool_calls=[]), UserMessage(role='user', content='Plot average yearly inflation as a time series', context=None), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name=, arguments={'code': 'import pandas as pd\\nimport matplotlib.pyplot as plt\\n\\n# Load data\\ndf = pd.read_csv(\"\")\\n\\n# Convert \\'Year\\' column to datetime\\ndf[\\'Year\\'] = pd.to_datetime(df[\\'Year\\'])\\n\\n# Group by year and calculate average inflation\\naverage_inflation = df.groupby(\\'Year\\')[\\'Inflation\\'].mean().reset_index()\\n\\n# Plot average yearly inflation as a time series\\nplt.figure(figsize=(10,6))\\nplt.plot(average_inflation[\\'Year\\'], average_inflation[\\'Inflation\\'], marker=\\'o\\')\\nplt.title(\\'Average Yearly Inflation\\')\\nplt.xlabel(\\'Year\\')\\nplt.ylabel(\\'Inflation Rate\\')\\nplt.grid(True)\\nplt.show()'})]), ToolResponseMessage(role='tool', call_id='', tool_name=, content=\"completed\\n[stderr]\\nTraceback (most recent call last):\\n line 5, in \\n from bwrap.core import main\\nModuleNotFoundError: No module named 'bwrap.core'\\n[/stderr]\")])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=None, system_message_behavior=)), ('tool_prompt_format', None), ('tools', [ToolDefinition(tool_name=, description='Execute code', parameters={'code': ToolParamDefinition(param_type='string', description='The code to execute', required=True, default=None)})])]": {
+ "('meta-llama/Llama-3.1-8B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='Here is a csv, can you describe it?', context=None), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name=, arguments={'code': 'import pandas as pd\\n# Load data\\ndf = pd.read_csv(\"\")\\n# Rows\\nprint(\"Number of rows and columns in the data:\", df.shape)\\n# Columns\\nprint(\"Columns of the data are:\", len(df.columns))\\n# Column names\\nprint(\"Columns of the data are:\", df.columns)\\n# Column dtypes\\nprint(\"Datatype of the columns are:\", df.dtypes)'})]), ToolResponseMessage(role='tool', call_id='', tool_name=, content=\"completed\\n[stderr]\\nTraceback (most recent call last):\\n line 5, in \\n from bwrap.core import main\\nModuleNotFoundError: No module named 'bwrap.core'\\n[/stderr]\"), CompletionMessage(role='assistant', content='It seems that the file \"\" does not exist. \\n\\nTo describe the csv file, you need to provide the actual file path or the file itself. If you are using a remote server or a local machine, you can use the `pd.read_csv()` function to load the csv file. \\n\\nHere is an example:\\n\\n```python\\nimport pandas as pd\\n# Load data\\ndf = pd.read_csv(\\'inflation.csv\\')\\n# Print the first 5 rows of the dataframe\\nprint(df.head())\\n# Print the summary of the dataframe\\nprint(df.info())\\nprint(df.describe())\\n```\\n\\nThis will print the first 5 rows of the dataframe, the summary of the dataframe (including the index dtype and column count), and the description of the dataframe (including count, mean, std, min, 25%, 50%, 75%, max for each column).', stop_reason=, tool_calls=[]), UserMessage(role='user', content='Plot average yearly inflation as a time series', context=None), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name=, arguments={'code': \"import pandas as pd\\nimport matplotlib.pyplot as plt\\n\\n# Load data\\ndf = pd.read_csv('inflation.csv')\\n\\n# Convert 'date' column to datetime\\ndf['date'] = pd.to_datetime(df['date'])\\n\\n# Group by year and calculate average inflation\\naverage_inflation = df.groupby(df['date'].dt.year)['inflation'].mean()\\n\\n# Plot the time series\\nplt.figure(figsize=(10,6))\\nplt.plot(average_inflation.index, average_inflation.values, marker='o')\\nplt.title('Average Yearly Inflation')\\nplt.xlabel('Year')\\nplt.ylabel('Average Inflation')\\nplt.grid(True)\\nplt.show()\"})]), ToolResponseMessage(role='tool', call_id='', tool_name=, content=\"completed\\n[stderr]\\nTraceback (most recent call last):\\n line 5, in \\n from bwrap.core import main\\nModuleNotFoundError: No module named 'bwrap.core'\\n[/stderr]\")])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=None, system_message_behavior=)), ('tool_prompt_format', None), ('tools', [ToolDefinition(tool_name=, description='Execute code', parameters={'code': ToolParamDefinition(param_type='string', description='The code to execute', required=True, default=None)})])]": {
"chunks": [
{
"event": {
@@ -4225,7 +5679,7 @@
{
"event": {
"delta": {
- "text": "It",
+ "text": "This",
"type": "text"
},
"event_type": {
@@ -4240,7 +5694,7 @@
{
"event": {
"delta": {
- "text": " seems that the file \"/var/f",
+ "text": " code will create a line plot of",
"type": "text"
},
"event_type": {
@@ -4255,7 +5709,7 @@
{
"event": {
"delta": {
- "text": "olders/cz/vyh7y",
+ "text": " the average yearly inflation over time. The x-axis",
"type": "text"
},
"event_type": {
@@ -4270,7 +5724,7 @@
{
"event": {
"delta": {
- "text": "1d11xg881lsx",
+ "text": " represents the year and the y-axis represents the average",
"type": "text"
},
"event_type": {
@@ -4285,7 +5739,7 @@
{
"event": {
"delta": {
- "text": "sshnc5c0000gn",
+ "text": " inflation. The plot also includes a title, labels for the x",
"type": "text"
},
"event_type": {
@@ -4300,7 +5754,7 @@
{
"event": {
"delta": {
- "text": "/T/tmpc_ozqkdv/EzGU",
+ "text": " and y axes, and a grid for",
"type": "text"
},
"event_type": {
@@ -4315,7 +5769,7 @@
{
"event": {
"delta": {
- "text": "QEnJinflation.csv\" does",
+ "text": " better visibility.\n\nPlease note that you need",
"type": "text"
},
"event_type": {
@@ -4330,7 +5784,7 @@
{
"event": {
"delta": {
- "text": " not exist. \n\nTo plot the average yearly inflation as a",
+ "text": " to replace 'inflation.csv' with the actual path to your",
"type": "text"
},
"event_type": {
@@ -4345,7 +5799,7 @@
{
"event": {
"delta": {
- "text": " time series, you need to provide the actual file path or",
+ "text": " csv file. Also, this code assumes that the 'date",
"type": "text"
},
"event_type": {
@@ -4360,7 +5814,7 @@
{
"event": {
"delta": {
- "text": " the file itself. If you are using a remote server,",
+ "text": "' column in your csv file is in a format that can be",
"type": "text"
},
"event_type": {
@@ -4375,7 +5829,7 @@
{
"event": {
"delta": {
- "text": " you can use the `requests` library to download the file",
+ "text": " parsed by pandas' `to_datetime` function. If your date",
"type": "text"
},
"event_type": {
@@ -4390,7 +5844,7 @@
{
"event": {
"delta": {
- "text": " and then load it into a pandas dataframe. \n\nHere",
+ "text": " column is in a different format, you may need to specify the",
"type": "text"
},
"event_type": {
@@ -4405,502 +5859,7 @@
{
"event": {
"delta": {
- "text": " is an example of how you can do it:\n\n```\nimport",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": " pandas as pd\nimport matplotlib.pyplot as plt\nimport requests\n\n",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": "# Download the csv file\nurl = \"https://example.com",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": "/your_file.csv\"\nresponse = requests.get(url)\n\n# Load",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": " the csv file into a pandas dataframe\ndf = pd.read_csv",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": "(response.content)\n\n# Convert 'Year' column to datetime\ndf",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": "['Year'] = pd.to_datetime(df['Year'])\n\n# Group",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": " by year and calculate average inflation\naverage_inflation = df.groupby",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": "('Year')['Inflation'].mean().reset_index()\n\n# Plot",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": " average yearly inflation as a time series\n",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": "plt.figure(figsize=(10,6))\nplt.plot(average_in",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": "flation['Year'], average_inflation['Inflation'], marker='",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": "o')\nplt.title('Average Yearly Inflation')\nplt.xlabel",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": "('Year')\nplt.ylabel('Inflation Rate')\nplt.grid(True",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": ")\nplt.show()\n```\n\nPlease replace the",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": " `url` variable with the actual URL of",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": " your csv file. \n\nIf you",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": " are using a local file, you can",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": " simply use the `pd.read_csv()` function with the file",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": " path:\n\n```\nimport pandas as pd\nimport matplotlib.pyplot as",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": " plt\n\n# Load the csv file into a pandas dataframe\ndf",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": " = pd.read_csv('your_file.csv')\n\n# Convert 'Year",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": "' column to datetime\ndf['Year'] = pd.to_datetime",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": "(df['Year'])\n\n# Group by",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": " year and calculate average inflation\naverage_inflation = df.groupby('",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": "Year')['Inflation'].mean().reset_index()\n\n# Plot average",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": " yearly inflation as a time series\nplt.figure",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": "(figsize=(10,6))\nplt.plot(average_inflation",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": "['Year'], average_inflation['Inflation'], marker='o",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": "')\nplt.title('Average Yearly Inflation')\nplt.xlabel('",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": "Year')\nplt.ylabel('Inflation Rate')\nplt.grid(True)\n",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": "plt.show()\n```\n\nPlease replace `'",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": "your_file.csv'` with the actual",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": " path to your csv file.",
+ "text": " format when calling `to_datetime`.",
"type": "text"
},
"event_type": {
@@ -4933,7 +5892,7 @@
],
"type": "generator"
},
- "('meta-llama/Llama-3.1-8B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='Here is a csv, can you describe it?', context=None), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name=, arguments={'code': 'import pandas as pd\\n# Load data\\ndf = pd.read_csv(\"\")\\n# Rows\\nprint(\"Number of rows and columns in the data:\", df.shape)\\n# Columns\\nprint(\"Columns of the data are:\", len(df.columns))\\n# Column names\\nprint(\"Columns of the data are:\", df.columns)\\n# Column dtypes\\nprint(\"Datatype of the columns are:\", df.dtypes)'})]), ToolResponseMessage(role='tool', call_id='', tool_name=, content=\"completed\\n[stderr]\\nTraceback (most recent call last):\\n line 5, in \\n from bwrap.core import main\\nModuleNotFoundError: No module named 'bwrap.core'\\n[/stderr]\"), CompletionMessage(role='assistant', content='It seems that the file \"\" does not exist. \\n\\nTo describe the csv file, you need to provide the actual file path or the file itself. If you are using a remote server, you can use the `requests` library to download the file and then load it into a pandas dataframe. \\n\\nHere is an example of how you can do it:\\n\\n```\\nimport pandas as pd\\nimport requests\\n\\n# Download the csv file\\nurl = \"https://example.com/your_file.csv\"\\nresponse = requests.get(url)\\n\\n# Load the csv file into a pandas dataframe\\ndf = pd.read_csv(response.content)\\n\\n# Print the description of the dataframe\\nprint(df.describe())\\n```\\n\\nPlease replace the `url` variable with the actual URL of your csv file. \\n\\nIf you are using a local file, you can simply use the `pd.read_csv()` function with the file path:\\n\\n```\\nimport pandas as pd\\n\\n# Load the csv file into a pandas dataframe\\ndf = pd.read_csv(\\'your_file.csv\\')\\n\\n# Print the description of the dataframe\\nprint(df.describe())\\n```\\n\\nPlease replace `\\'your_file.csv\\'` with the actual path to your csv file.', stop_reason=, tool_calls=[]), UserMessage(role='user', content='Plot average yearly inflation as a time series', context=None)])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=None, system_message_behavior=)), ('tool_prompt_format', None), ('tools', [ToolDefinition(tool_name=, description='Execute code', parameters={'code': ToolParamDefinition(param_type='string', description='The code to execute', required=True, default=None)})])]": {
+ "('meta-llama/Llama-3.1-8B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='Here is a csv, can you describe it?', context=None), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name=, arguments={'code': 'import pandas as pd\\n# Load data\\ndf = pd.read_csv(\"\")\\n# Rows\\nprint(\"Number of rows and columns in the data:\", df.shape)\\n# Columns\\nprint(\"Columns of the data are:\", len(df.columns))\\n# Column names\\nprint(\"Columns of the data are:\", df.columns)\\n# Column dtypes\\nprint(\"Datatype of the columns are:\", df.dtypes)'})]), ToolResponseMessage(role='tool', call_id='', tool_name=, content=\"completed\\n[stderr]\\nTraceback (most recent call last):\\n line 5, in \\n from bwrap.core import main\\nModuleNotFoundError: No module named 'bwrap.core'\\n[/stderr]\"), CompletionMessage(role='assistant', content='It seems that the file \"\" does not exist. \\n\\nTo describe the csv file, you need to provide the actual file path or the file itself. If you are using a remote server or a local machine, you can use the `pd.read_csv()` function to load the csv file. \\n\\nHere is an example:\\n\\n```python\\nimport pandas as pd\\n# Load data\\ndf = pd.read_csv(\\'inflation.csv\\')\\n# Print the first 5 rows of the dataframe\\nprint(df.head())\\n# Print the summary of the dataframe\\nprint(df.info())\\nprint(df.describe())\\n```\\n\\nThis will print the first 5 rows of the dataframe, the summary of the dataframe (including the index dtype and column count), and the description of the dataframe (including count, mean, std, min, 25%, 50%, 75%, max for each column).', stop_reason=, tool_calls=[]), UserMessage(role='user', content='Plot average yearly inflation as a time series', context=None)])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=None, system_message_behavior=)), ('tool_prompt_format', None), ('tools', [ToolDefinition(tool_name=, description='Execute code', parameters={'code': ToolParamDefinition(param_type='string', description='The code to execute', required=True, default=None)})])]": {
"chunks": [
{
"event": {
@@ -4976,7 +5935,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": "import pandas as pd\nimport matplotlib.pyplot as plt\n\n# Load",
+ "tool_call": "import pandas as pd\nimport matplotlib.pyplot as plt\n\n# Load data",
"type": "tool_call"
},
"event_type": {
@@ -4995,7 +5954,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": " data\ndf = pd.read_csv(\"/var/folders/cz",
+ "tool_call": "\ndf = pd.read_csv('inflation.csv')\n\n#",
"type": "tool_call"
},
"event_type": {
@@ -5014,7 +5973,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": "/vyh7y1d11x",
+ "tool_call": " Convert 'date' column to datetime\ndf['date']",
"type": "tool_call"
},
"event_type": {
@@ -5033,7 +5992,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": "g881lsxsshnc5c0000gn/T/tmpc",
+ "tool_call": " = pd.to_datetime(df['date'])\n\n# Group by",
"type": "tool_call"
},
"event_type": {
@@ -5052,7 +6011,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": "_ozqkdv/EzGUQEnJinflation",
+ "tool_call": " year and calculate average inflation\naverage_in",
"type": "tool_call"
},
"event_type": {
@@ -5071,7 +6030,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": ".csv\")\n\n# Convert 'Year' column",
+ "tool_call": "flation = df.groupby(df['date'].dt.year",
"type": "tool_call"
},
"event_type": {
@@ -5090,7 +6049,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": " to datetime\ndf['Year'] = pd.to_datetime(df['",
+ "tool_call": ")['inflation'].mean()\n\n# Plot the time series",
"type": "tool_call"
},
"event_type": {
@@ -5109,7 +6068,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": "Year'])\n\n# Group by year and calculate average inflation\naverage_in",
+ "tool_call": "\nplt.figure(figsize=(10,6))\nplt.plot(average_in",
"type": "tool_call"
},
"event_type": {
@@ -5128,7 +6087,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": "flation = df.groupby('Year')['Inflation'].mean().reset",
+ "tool_call": "flation.index, average_inflation.values, marker",
"type": "tool_call"
},
"event_type": {
@@ -5147,7 +6106,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": "_index()\n\n# Plot average yearly inflation as a time series\nplt",
+ "tool_call": "='o')\nplt.title('Average Yearly Inflation')\n",
"type": "tool_call"
},
"event_type": {
@@ -5166,7 +6125,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": ".figure(figsize=(10,6))\nplt",
+ "tool_call": "plt.xlabel('Year')\nplt.ylabel('Average",
"type": "tool_call"
},
"event_type": {
@@ -5185,64 +6144,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": ".plot(average_inflation['Year'], average_inflation['In",
- "type": "tool_call"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "parse_status": {
- "__enum__": "ToolCallParseStatus",
- "value": "in_progress"
- },
- "tool_call": "flation'], marker='o')\nplt.title('Average Yearly Inflation')\n",
- "type": "tool_call"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "parse_status": {
- "__enum__": "ToolCallParseStatus",
- "value": "in_progress"
- },
- "tool_call": "plt.xlabel('Year')\nplt.ylabel('Inflation Rate')\nplt.grid(True",
- "type": "tool_call"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "parse_status": {
- "__enum__": "ToolCallParseStatus",
- "value": "in_progress"
- },
- "tool_call": ")\nplt.show()",
+ "tool_call": " Inflation')\nplt.grid(True)\nplt.show()",
"type": "tool_call"
},
"event_type": {
@@ -5263,9 +6165,9 @@
},
"tool_call": {
"arguments": {
- "code": "import pandas as pd\nimport matplotlib.pyplot as plt\n\n# Load data\ndf = pd.read_csv(\"/var/folders/cz/vyh7y1d11xg881lsxsshnc5c0000gn/T/tmpc_ozqkdv/EzGUQEnJinflation.csv\")\n\n# Convert 'Year' column to datetime\ndf['Year'] = pd.to_datetime(df['Year'])\n\n# Group by year and calculate average inflation\naverage_inflation = df.groupby('Year')['Inflation'].mean().reset_index()\n\n# Plot average yearly inflation as a time series\nplt.figure(figsize=(10,6))\nplt.plot(average_inflation['Year'], average_inflation['Inflation'], marker='o')\nplt.title('Average Yearly Inflation')\nplt.xlabel('Year')\nplt.ylabel('Inflation Rate')\nplt.grid(True)\nplt.show()"
+ "code": "import pandas as pd\nimport matplotlib.pyplot as plt\n\n# Load data\ndf = pd.read_csv('inflation.csv')\n\n# Convert 'date' column to datetime\ndf['date'] = pd.to_datetime(df['date'])\n\n# Group by year and calculate average inflation\naverage_inflation = df.groupby(df['date'].dt.year)['inflation'].mean()\n\n# Plot the time series\nplt.figure(figsize=(10,6))\nplt.plot(average_inflation.index, average_inflation.values, marker='o')\nplt.title('Average Yearly Inflation')\nplt.xlabel('Year')\nplt.ylabel('Average Inflation')\nplt.grid(True)\nplt.show()"
},
- "call_id": "7e62f796-c5cd-4021-a651-b0048b75a083",
+ "call_id": "65691869-f741-420c-bb73-23a1f8c0d82a",
"tool_name": {
"__enum__": "BuiltinTool",
"value": "code_interpreter"
@@ -5356,7 +6258,7 @@
{
"event": {
"delta": {
- "text": "olders/cz/vyh7y1d11x",
+ "text": "olders/cz/vyh7y1d11",
"type": "text"
},
"event_type": {
@@ -5371,7 +6273,7 @@
{
"event": {
"delta": {
- "text": "g881lsxsshnc5c000",
+ "text": "xg881lsxsshnc5c0000gn/T/tmp8",
"type": "text"
},
"event_type": {
@@ -5386,7 +6288,7 @@
{
"event": {
"delta": {
- "text": "0gn/T/tmpc",
+ "text": "d5c8spc/Q8Y9qzV",
"type": "text"
},
"event_type": {
@@ -5401,7 +6303,7 @@
{
"event": {
"delta": {
- "text": "_ozqkdv/EzGUQEnJinflation",
+ "text": "Xinflation.csv\" does not exist",
"type": "text"
},
"event_type": {
@@ -5416,7 +6318,7 @@
{
"event": {
"delta": {
- "text": ".csv\" does not exist. \n\nTo",
+ "text": ". \n\nTo describe the csv file, you need to provide",
"type": "text"
},
"event_type": {
@@ -5431,7 +6333,7 @@
{
"event": {
"delta": {
- "text": " describe the csv file, you need to provide the actual file",
+ "text": " the actual file path or the file itself",
"type": "text"
},
"event_type": {
@@ -5446,7 +6348,7 @@
{
"event": {
"delta": {
- "text": " path or the file itself. If you",
+ "text": ". If you are using a remote server or a local machine,",
"type": "text"
},
"event_type": {
@@ -5461,7 +6363,7 @@
{
"event": {
"delta": {
- "text": " are using a remote server, you can use the `requests` library",
+ "text": " you can use the `pd.read_csv()` function to load the",
"type": "text"
},
"event_type": {
@@ -5476,7 +6378,7 @@
{
"event": {
"delta": {
- "text": " to download the file and then load it into a pandas dataframe. \n\nHere",
+ "text": " csv file. \n\nHere is an example:\n\n```python\nimport",
"type": "text"
},
"event_type": {
@@ -5491,7 +6393,7 @@
{
"event": {
"delta": {
- "text": " is an example of how you can do it:\n\n```\nimport pandas as",
+ "text": " pandas as pd\n# Load data\ndf",
"type": "text"
},
"event_type": {
@@ -5506,7 +6408,7 @@
{
"event": {
"delta": {
- "text": " pd\nimport requests\n\n# Download the csv file\nurl = \"https",
+ "text": " = pd.read_csv('inflation.csv",
"type": "text"
},
"event_type": {
@@ -5521,7 +6423,7 @@
{
"event": {
"delta": {
- "text": "://example.com/your_file.csv\"\nresponse = requests.get(url)\n\n#",
+ "text": "')\n# Print the first 5 rows of the dataframe\nprint",
"type": "text"
},
"event_type": {
@@ -5536,7 +6438,7 @@
{
"event": {
"delta": {
- "text": " Load the csv file into a pandas dataframe\ndf",
+ "text": "(df.head())\n# Print the summary of the dataframe\nprint(df",
"type": "text"
},
"event_type": {
@@ -5551,7 +6453,7 @@
{
"event": {
"delta": {
- "text": " = pd.read_csv(response.content)\n\n# Print",
+ "text": ".info())\nprint(df.describe())\n```\n\nThis will print the first",
"type": "text"
},
"event_type": {
@@ -5566,7 +6468,7 @@
{
"event": {
"delta": {
- "text": " the description of the dataframe\nprint",
+ "text": " 5 rows of the dataframe,",
"type": "text"
},
"event_type": {
@@ -5581,7 +6483,7 @@
{
"event": {
"delta": {
- "text": "(df.describe())\n```\n\nPlease replace the `url`",
+ "text": " the summary of the dataframe (including the",
"type": "text"
},
"event_type": {
@@ -5596,7 +6498,7 @@
{
"event": {
"delta": {
- "text": " variable with the actual URL of your csv file. \n\nIf",
+ "text": " index dtype and column count), and the description of the dataframe",
"type": "text"
},
"event_type": {
@@ -5611,7 +6513,7 @@
{
"event": {
"delta": {
- "text": " you are using a",
+ "text": " (including count, mean, std,",
"type": "text"
},
"event_type": {
@@ -5626,7 +6528,7 @@
{
"event": {
"delta": {
- "text": " local file, you can simply use the `pd.read_csv",
+ "text": " min, 25%, 50%, 75%, max",
"type": "text"
},
"event_type": {
@@ -5641,112 +6543,7 @@
{
"event": {
"delta": {
- "text": "()` function with the file path:\n\n```\nimport pandas as",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": " pd\n\n#",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": " Load the csv file into a pandas",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": " dataframe\ndf = pd.read_csv('your",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": "_file.csv')\n\n# Print the description of",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": " the dataframe\nprint(df.describe())\n``",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": "`\n\nPlease replace `'your_file.csv'` with the actual path",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": " to your csv file.",
+ "text": " for each column).",
"type": "text"
},
"event_type": {
@@ -5822,7 +6619,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": "import pandas as pd\n# Load data\ndf = pd",
+ "tool_call": "import pandas as pd\n# Load data",
"type": "tool_call"
},
"event_type": {
@@ -5841,7 +6638,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": ".read_csv(\"/var",
+ "tool_call": "\ndf =",
"type": "tool_call"
},
"event_type": {
@@ -5860,7 +6657,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": "/folders/cz/vyh7y1d11xg881",
+ "tool_call": " pd.read_csv(\"/var/folders/cz/vyh7",
"type": "tool_call"
},
"event_type": {
@@ -5879,7 +6676,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": "lsxsshnc5c0000gn/T/tmpc_oz",
+ "tool_call": "y1d11xg881lsx",
"type": "tool_call"
},
"event_type": {
@@ -5898,7 +6695,45 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": "qkdv/EzGUQEnJinflation.csv\")\n",
+ "tool_call": "sshnc5c0000gn/T",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "/tmp8d5c8spc",
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "/Q8Y9qzVXinflation.csv\")\n",
"type": "tool_call"
},
"event_type": {
@@ -5955,7 +6790,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": " are:\", len(df.columns))\n# Column names\n",
+ "tool_call": " are:\", len(df.columns))\n# Column names\nprint",
"type": "tool_call"
},
"event_type": {
@@ -5974,7 +6809,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": "print(\"Columns of the data are:\", df.columns)\n",
+ "tool_call": "(\"Columns of the data are:\", df.columns)\n",
"type": "tool_call"
},
"event_type": {
@@ -5993,7 +6828,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": "# Column dtypes\nprint(\"Datatype of",
+ "tool_call": "# Column dtypes\nprint(\"Datatype of the columns are",
"type": "tool_call"
},
"event_type": {
@@ -6012,7 +6847,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": " the columns are:\", df.dtypes)",
+ "tool_call": ":\", df.dtypes)",
"type": "tool_call"
},
"event_type": {
@@ -6033,9 +6868,9 @@
},
"tool_call": {
"arguments": {
- "code": "import pandas as pd\n# Load data\ndf = pd.read_csv(\"/var/folders/cz/vyh7y1d11xg881lsxsshnc5c0000gn/T/tmpc_ozqkdv/EzGUQEnJinflation.csv\")\n# Rows\nprint(\"Number of rows and columns in the data:\", df.shape)\n# Columns\nprint(\"Columns of the data are:\", len(df.columns))\n# Column names\nprint(\"Columns of the data are:\", df.columns)\n# Column dtypes\nprint(\"Datatype of the columns are:\", df.dtypes)"
+ "code": "import pandas as pd\n# Load data\ndf = pd.read_csv(\"/var/folders/cz/vyh7y1d11xg881lsxsshnc5c0000gn/T/tmp8d5c8spc/Q8Y9qzVXinflation.csv\")\n# Rows\nprint(\"Number of rows and columns in the data:\", df.shape)\n# Columns\nprint(\"Columns of the data are:\", len(df.columns))\n# Column names\nprint(\"Columns of the data are:\", df.columns)\n# Column dtypes\nprint(\"Datatype of the columns are:\", df.dtypes)"
},
- "call_id": "e57ec9d1-68d8-4493-b3d3-0fb683a4663a",
+ "call_id": "15893b4c-5a55-4ea7-9902-8a2f28fa3659",
"tool_name": {
"__enum__": "BuiltinTool",
"value": "code_interpreter"
@@ -6076,7 +6911,7 @@
],
"type": "generator"
},
- "('meta-llama/Llama-3.1-8B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='I am attaching some documentation for Torchtune. Help me answer questions I will ask next.', context=None), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name='knowledge_search', arguments={'query': 'Torchtune documentation'})]), ToolResponseMessage(role='tool', call_id='', tool_name='knowledge_search', content=[TextContentItem(type='text', text='knowledge_search tool found 5 chunks:\\nBEGIN of knowledge_search tool results.\\n'), TextContentItem(type='text', text='Result 1:\\nDocument_id:71183\\nContent: conversational data, :func:`~torchtune.datasets.chat_dataset` seems to be a good fit. For any\\ncustom local dataset we always need to specify ``source``, ``data_files``, and ``split`` for any dataset\\nbuilder in torchtune. For :func:`~torchtune.datasets.chat_dataset`, we additionally need to specify\\n``conversation_column`` and ``conversation_style``. Our data follows the ``\"sharegpt\"`` format, so\\nwe can specify that here. Altogether, our :func:`~torchtune.datasets.chat_dataset` call should\\nlook like so:\\n\\n.. code-block:: python\\n\\n from torchtune.datasets import chat_dataset\\n from torchtune.models.llama3 import llama3_tokenizer\\n\\n tokenizer = llama3_tokenizer(\"/tmp/Meta-Llama-3-8B-Instruct/original/tokenizer.model\")\\n ds = chat_dataset(\\n tokenizer=tokenizer,\\n source=\"json\",\\n data_files=\"data/my_data.json\",\\n split=\"train\",\\n conversation_column=\"dialogue\",\\n conversation_style=\"sharegpt\",\\n )\\n\\n.. code-block:: yaml\\n\\n # In config\\n tokenizer:\\n _component_: torchtune.models.llama3.llama3_tokenizer\\n path: /tmp/Meta-Llama-3-8B-Instruct/original/tokenizer.model\\n\\n dataset:\\n _component_: torchtune.datasets.chat_dataset\\n source: json\\n data_files: data/my_data.json\\n split: train\\n conversation_column: dialogue\\n conversation_style: sharegpt\\n\\n.. note::\\n You can pass in any keyword argument for `load_dataset `_ into all our\\n Dataset classes and they will honor them. This is useful for common parameters\\n such as specifying the data split with :code:`split` or configuration with\\n :code:`name`\\n\\nIf you needed to add a prompt template, you would simply pass it into the tokenizer.\\nSince we\\'re fine-tuning Llama3, the tokenizer will handle all formatting for\\nus and prompt templates are optional. Other models such as Mistral\\'s :class:`~torchtune.models.mistral._tokenizer.MistralTokenizer`,\\nuse a chat template by default (:class:`~torchtune.models.mistral.MistralChatTemplate`) to format\\nall messages according to their `recommendations `_, a parameter-efficient finetuning technique,\\nand show you how you can use torchtune to finetune a Llama2 model with LoRA.\\nIf you already know what LoRA is and want to get straight to running\\nyour own LoRA finetune in torchtune, you can jump to :ref:`LoRA finetuning recipe in torchtune`.\\n\\n.. grid:: 2\\n\\n .. grid-item-card:: :octicon:`mortar-board;1em;` What you will learn\\n\\n * What LoRA is and how it saves memory during finetuning\\n * An overview of LoRA components in torchtune\\n * How to run a LoRA finetune using torchtune\\n * How to experiment with different LoRA configurations\\n\\n .. grid-item-card:: :octicon:`list-unordered;1em;` Prerequisites\\n\\n * Be familiar with :ref:`torchtune`\\n * Make sure to :ref:`install torchtune`\\n * Make sure you have downloaded the :ref:`Llama2-7B model weights`\\n\\nWhat is LoRA?\\n-------------\\n\\n`LoRA `_ is an adapter-based method for\\nparameter-efficient finetuning that adds trainable low-rank decomposition matrices to different layers of a neural network,\\nthen freezes the network's remaining parameters. LoRA is most commonly applied to\\ntransformer models, in which case it is common to add the low-rank matrices\\nto some of the linear projections in each transformer layer's self-attention.\\n\\n.. note::\\n\\n If you're unfamiliar, check out these references for the `definition of rank `_\\n and discussion of `low-rank approximations `_.\\n\\nBy finetuning with LoRA (as opposed to finetuning all model parameters),\\nyou can expect to see memory savings due to a substantial reduction in the\\nnumber of parameters with gradients. When using an optimizer with momentum,\\nlike `AdamW `_.\\nMake sure that you have first downloaded the Llama2 weights and tokenizer by following :ref:`these instructions`.\\nYou can then run the following command to perform a LoRA finetune of Llama2-7B with two GPUs (each having VRAM of at least 16GB):\\n\\n.. code-block:: bash\\n\\n tune run --nnodes 1 --nproc_per_node 2 lora_finetune_distributed --config llama2/7B_lora\\n\\n.. note::\\n Make sure to point to the location of your Llama2 weights and tokenizer. This can be done\\n either by adding :code:`checkpointer.checkpoint_files=[my_model_checkpoint_path] tokenizer_checkpoint=my_tokenizer_checkpoint_path`\\n or by directly modifying the :code:`7B_lora.yaml` file. See our \"\":ref:`config_tutorial_label`\" recipe\\n for more details on how you can easily clone and modify torchtune configs.\\n\\n.. note::\\n You can modify the value of :code:`nproc_per_node` depending on (a) the number of GPUs you have available,\\n and (b) the memory constraints of your hardware.\\n\\nThe preceding command will run a LoRA finetune with torchtune\\'s factory settings, but we may want to experiment a bit.\\nLet\\'s take a closer look at some of the :code:`lora_finetune_distributed` config.\\n\\n.. code-block:: yaml\\n\\n # Model Arguments\\n model:\\n _component_: lora_llama2_7b\\n lora_attn_modules: [\\'q_proj\\', \\'v_proj\\']\\n lora_rank: 8\\n lora_alpha: 16\\n ...\\n\\nWe see that the\\n'), TextContentItem(type='text', text='Result 5:\\nDocument_id:84988\\nContent: etune\\n:func:`torchtune.models.llama3.llama3_8b` with DoRA, you would use :func:`torchtune.models.llama3.lora_llama3_8b` with ``use_dora=True``:\\n\\n.. code-block:: bash\\n\\n tune run lora_finetune_single_device --config llama3/8B_lora_single_device \\\\\\n model.use_dora=True\\n\\n.. code-block:: yaml\\n\\n model:\\n _component_: torchtune.models.lora_llama3_8b\\n use_dora: True\\n\\nSince DoRA extends LoRA, the parameters for :ref:`customizing LoRA ` are identical. You can also quantize the base model weights like in :ref:`glossary_qlora` by using ``quantize=True`` to reap\\neven more memory savings!\\n\\n.. code-block:: bash\\n\\n tune run lora_finetune_single_device --config llama3/8B_lora_single_device \\\\\\n model.apply_lora_to_mlp=True \\\\\\n model.lora_attn_modules=[\"q_proj\",\"k_proj\",\"v_proj\"] \\\\\\n model.lora_rank=16 \\\\\\n model.lora_alpha=32 \\\\\\n model.use_dora=True \\\\\\n model.quantize_base=True\\n\\n.. code-block:: yaml\\n\\n model:\\n _component_: torchtune.models.lora_llama3_8b\\n apply_lora_to_mlp: True\\n lora_attn_modules: [\"q_proj\", \"k_proj\", \"v_proj\"]\\n lora_rank: 16\\n lora_alpha: 32\\n use_dora: True\\n quantize_base: True\\n\\n\\n.. note::\\n\\n Under the hood, we\\'ve enabled DoRA by adding the :class:`~torchtune.modules.peft.DoRALinear` module, which we swap\\n out for :class:`~torchtune.modules.peft.LoRALinear` when ``use_dora=True``.\\n\\n.. _glossary_distrib:\\n\\n\\n.. TODO\\n\\n.. Distributed\\n.. -----------\\n\\n.. .. _glossary_fsdp:\\n\\n.. Fully Sharded Data Parallel (FSDP)\\n.. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\n\\n.. All our ``_distributed`` recipes use `FSDP `.\\n.. .. _glossary_fsdp2:\\n\\n'), TextContentItem(type='text', text='END of knowledge_search tool results.\\n')]), CompletionMessage(role='assistant', content='You can ask your question now. I will help you answer it using the knowledge_search tool results.', stop_reason=, tool_calls=[]), UserMessage(role='user', content='Tell me how to use LoRA', context=None), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name='knowledge_search', arguments={'query': 'How to use LoRA'})]), ToolResponseMessage(role='tool', call_id='', tool_name='knowledge_search', content=[TextContentItem(type='text', text='knowledge_search tool found 5 chunks:\\nBEGIN of knowledge_search tool results.\\n'), TextContentItem(type='text', text=\"Result 1:\\nDocument_id:98cad\\nContent: .. _lora_finetune_label:\\n\\n============================\\nFine-Tuning Llama2 with LoRA\\n============================\\n\\nThis guide will teach you about `LoRA `_, a parameter-efficient finetuning technique,\\nand show you how you can use torchtune to finetune a Llama2 model with LoRA.\\nIf you already know what LoRA is and want to get straight to running\\nyour own LoRA finetune in torchtune, you can jump to :ref:`LoRA finetuning recipe in torchtune`.\\n\\n.. grid:: 2\\n\\n .. grid-item-card:: :octicon:`mortar-board;1em;` What you will learn\\n\\n * What LoRA is and how it saves memory during finetuning\\n * An overview of LoRA components in torchtune\\n * How to run a LoRA finetune using torchtune\\n * How to experiment with different LoRA configurations\\n\\n .. grid-item-card:: :octicon:`list-unordered;1em;` Prerequisites\\n\\n * Be familiar with :ref:`torchtune`\\n * Make sure to :ref:`install torchtune`\\n * Make sure you have downloaded the :ref:`Llama2-7B model weights`\\n\\nWhat is LoRA?\\n-------------\\n\\n`LoRA `_ is an adapter-based method for\\nparameter-efficient finetuning that adds trainable low-rank decomposition matrices to different layers of a neural network,\\nthen freezes the network's remaining parameters. LoRA is most commonly applied to\\ntransformer models, in which case it is common to add the low-rank matrices\\nto some of the linear projections in each transformer layer's self-attention.\\n\\n.. note::\\n\\n If you're unfamiliar, check out these references for the `definition of rank `_\\n and discussion of `low-rank approximations `_.\\n\\nBy finetuning with LoRA (as opposed to finetuning all model parameters),\\nyou can expect to see memory savings due to a substantial reduction in the\\nnumber of parameters with gradients. When using an optimizer with momentum,\\nlike `AdamW `_.\\nMake sure that you have first downloaded the Llama2 weights and tokenizer by following :ref:`these instructions`.\\nYou can then run the following command to perform a LoRA finetune of Llama2-7B with two GPUs (each having VRAM of at least 16GB):\\n\\n.. code-block:: bash\\n\\n tune run --nnodes 1 --nproc_per_node 2 lora_finetune_distributed --config llama2/7B_lora\\n\\n.. note::\\n Make sure to point to the location of your Llama2 weights and tokenizer. This can be done\\n either by adding :code:`checkpointer.checkpoint_files=[my_model_checkpoint_path] tokenizer_checkpoint=my_tokenizer_checkpoint_path`\\n or by directly modifying the :code:`7B_lora.yaml` file. See our \"\":ref:`config_tutorial_label`\" recipe\\n for more details on how you can easily clone and modify torchtune configs.\\n\\n.. note::\\n You can modify the value of :code:`nproc_per_node` depending on (a) the number of GPUs you have available,\\n and (b) the memory constraints of your hardware.\\n\\nThe preceding command will run a LoRA finetune with torchtune\\'s factory settings, but we may want to experiment a bit.\\nLet\\'s take a closer look at some of the :code:`lora_finetune_distributed` config.\\n\\n.. code-block:: yaml\\n\\n # Model Arguments\\n model:\\n _component_: lora_llama2_7b\\n lora_attn_modules: [\\'q_proj\\', \\'v_proj\\']\\n lora_rank: 8\\n lora_alpha: 16\\n ...\\n\\nWe see that the\\n'), TextContentItem(type='text', text='Result 3:\\nDocument_id:84988\\nContent: with training with LoRA quickly,\\njust specify any config with ``_lora`` in its name, e.g:\\n\\n.. code-block:: bash\\n\\n tune run lora_finetune_single_device --config llama3/8B_lora_single_device\\n\\n\\nThere are two sets of parameters to customize LoRA to suit your needs. Firstly, the parameters which control\\nwhich linear layers LoRA should be applied to in the model:\\n\\n* ``lora_attn_modules: List[str]`` accepts a list of strings specifying which layers of the model to apply\\n LoRA to:\\n\\n * ``q_proj`` applies LoRA to the query projection layer.\\n * ``k_proj`` applies LoRA to the key projection layer.\\n * ``v_proj`` applies LoRA to the value projection layer.\\n * ``output_proj`` applies LoRA to the attention output projection layer.\\n\\n Whilst adding more layers to be fine-tuned may improve model accuracy,\\n this will come at the cost of increased memory usage and reduced training speed.\\n\\n* ``apply_lora_to_mlp: Bool`` applies LoRA to the MLP in each transformer layer.\\n* ``apply_lora_to_output: Bool`` applies LoRA to the model\\'s final output projection.\\n This is usually a projection to vocabulary space (e.g. in language models), but\\n other modelling tasks may have different projections - classifier models will project\\n to the number of classes, for example\\n\\n.. note::\\n\\n Models which use tied embeddings (such as Gemma and Qwen2 1.5B and 0.5B) for the\\n final output projection do not support ``apply_lora_to_output``.\\n\\nThese are all specified under the ``model`` flag or config entry, i.e:\\n\\n.. code-block:: bash\\n\\n tune run lora_finetune_single_device --config llama3/8B_lora_single_device \\\\\\n model.apply_lora_to_mlp=True \\\\\\n model.lora_attn_modules=[\"q_proj\",\"k_proj\",\"v_proj\",\"output_proj\"]\\n\\n.. code-block:: yaml\\n\\n model:\\n _component_: torchtune.models.llama3.lora_llama3_8b\\n apply_lora_to_mlp: True\\n model.lora_attn_modules: [\"q_proj\", \"k_proj\", \"v_proj\",\"output_proj\"]\\n\\nSecondly, parameters which control the scale of the impact of LoRA on the model:\\n\\n* ``lora_rank: int`` affects the scale of\\n'), TextContentItem(type='text', text='Result 4:\\nDocument_id:98cad\\nContent: LoRA to Llama2 models\\n------------------------------\\n\\nWith torchtune, we can easily apply LoRA to Llama2 with a variety of different configurations.\\nLet\\'s take a look at how to construct Llama2 models in torchtune with and without LoRA.\\n\\n.. code-block:: python\\n\\n from torchtune.models.llama2 import llama2_7b, lora_llama2_7b\\n\\n # Build Llama2 without any LoRA layers\\n base_model = llama2_7b()\\n\\n # The default settings for lora_llama2_7b will match those for llama2_7b\\n # We just need to define which layers we want LoRA applied to.\\n # Within each self-attention, we can choose from [\"q_proj\", \"k_proj\", \"v_proj\", and \"output_proj\"].\\n # We can also set apply_lora_to_mlp=True or apply_lora_to_output=True to apply LoRA to other linear\\n # layers outside of the self-attention.\\n lora_model = lora_llama2_7b(lora_attn_modules=[\"q_proj\", \"v_proj\"])\\n\\n.. note::\\n\\n Calling :func:`lora_llama_2_7b ` alone will not handle the definition of which parameters are trainable.\\n See :ref:`below` for how to do this.\\n\\nLet\\'s inspect each of these models a bit more closely.\\n\\n.. code-block:: bash\\n\\n # Print the first layer\\'s self-attention in the usual Llama2 model\\n >>> print(base_model.layers[0].attn)\\n MultiHeadAttention(\\n (q_proj): Linear(in_features=4096, out_features=4096, bias=False)\\n (k_proj): Linear(in_features=4096, out_features=4096, bias=False)\\n (v_proj): Linear(in_features=4096, out_features=4096, bias=False)\\n (output_proj): Linear(in_features=4096, out_features=4096, bias=False)\\n (pos_embeddings): RotaryPositionalEmbeddings()\\n )\\n\\n # Print the same for Llama2 with LoRA weights\\n >>> print(lora_model.layers[0].attn)\\n MultiHeadAttention(\\n (q_proj): LoRALinear(\\n (dropout): Dropout(p=0.0, inplace=False)\\n \\n'), TextContentItem(type='text', text='Result 5:\\nDocument_id:9c730\\nContent: ora_finetune_label>`.\\nFor more on QLoRA in torchtune, see our :ref:`QLoRA Tutorial `.\\n\\nLet\\'s take a look at how we can fine-tune Llama3-8B-Instruct with LoRA on a single device using torchtune. In this example, we will fine-tune\\nfor one epoch on a common instruct dataset for illustrative purposes. The basic command for a single-device LoRA fine-tune is\\n\\n.. code-block:: bash\\n\\n tune run lora_finetune_single_device --config llama3/8B_lora_single_device\\n\\n.. note::\\n To see a full list of recipes and their corresponding configs, simply run ``tune ls`` from the command line.\\n\\nWe can also add :ref:`command-line overrides ` as needed, e.g.\\n\\n.. code-block:: bash\\n\\n tune run lora_finetune_single_device --config llama3/8B_lora_single_device \\\\\\n checkpointer.checkpoint_dir= \\\\\\n tokenizer.path=/tokenizer.model \\\\\\n checkpointer.output_dir=\\n\\nThis will load the Llama3-8B-Instruct checkpoint and tokenizer from ```` used in the :ref:`tune download ` command above,\\nthen save a final checkpoint in the same directory following the original format. For more details on the\\ncheckpoint formats supported in torchtune, see our :ref:`checkpointing deep-dive `.\\n\\n.. note::\\n To see the full set of configurable parameters for this (and other) configs we can use :ref:`tune cp ` to copy (and modify)\\n the default config. :ref:`tune cp ` can be used with recipe scripts too, in case you want to make more custom changes\\n that cannot be achieved by directly modifying existing configurable parameters. For more on :ref:`tune cp ` see the section on\\n :ref:`modifying configs ` in our \":ref:`finetune_llama_label`\" tutorial.\\n\\nOnce training is complete, the model checkpoints will be saved and their locations will be logged. For\\nLoRA fine-tuning, the final checkpoint will contain the merged weights, and a copy of just the (much smaller) LoRA weights\\nwill\\n'), TextContentItem(type='text', text='END of knowledge_search tool results.\\n')])])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=None, system_message_behavior=)), ('tool_prompt_format', None), ('tools', [ToolDefinition(tool_name='knowledge_search', description='Search for information in a database.', parameters={'query': ToolParamDefinition(param_type='string', description='The query to search for. Can be a natural language sentence or keywords.', required=True, default=None)})])]": {
+ "('meta-llama/Llama-3.1-8B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='I am attaching some documentation for Torchtune. Help me answer questions I will ask next.', context=None), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name='knowledge_search', arguments={'query': 'Torchtune documentation'})]), ToolResponseMessage(role='tool', call_id='', tool_name='knowledge_search', content=[TextContentItem(type='text', text='knowledge_search tool found 5 chunks:\\nBEGIN of knowledge_search tool results.\\n'), TextContentItem(type='text', text='Result 1:\\nDocument_id:255c3\\nContent: conversational data, :func:`~torchtune.datasets.chat_dataset` seems to be a good fit. For any\\ncustom local dataset we always need to specify ``source``, ``data_files``, and ``split`` for any dataset\\nbuilder in torchtune. For :func:`~torchtune.datasets.chat_dataset`, we additionally need to specify\\n``conversation_column`` and ``conversation_style``. Our data follows the ``\"sharegpt\"`` format, so\\nwe can specify that here. Altogether, our :func:`~torchtune.datasets.chat_dataset` call should\\nlook like so:\\n\\n.. code-block:: python\\n\\n from torchtune.datasets import chat_dataset\\n from torchtune.models.llama3 import llama3_tokenizer\\n\\n tokenizer = llama3_tokenizer(\"/tmp/Meta-Llama-3-8B-Instruct/original/tokenizer.model\")\\n ds = chat_dataset(\\n tokenizer=tokenizer,\\n source=\"json\",\\n data_files=\"data/my_data.json\",\\n split=\"train\",\\n conversation_column=\"dialogue\",\\n conversation_style=\"sharegpt\",\\n )\\n\\n.. code-block:: yaml\\n\\n # In config\\n tokenizer:\\n _component_: torchtune.models.llama3.llama3_tokenizer\\n path: /tmp/Meta-Llama-3-8B-Instruct/original/tokenizer.model\\n\\n dataset:\\n _component_: torchtune.datasets.chat_dataset\\n source: json\\n data_files: data/my_data.json\\n split: train\\n conversation_column: dialogue\\n conversation_style: sharegpt\\n\\n.. note::\\n You can pass in any keyword argument for `load_dataset `_ into all our\\n Dataset classes and they will honor them. This is useful for common parameters\\n such as specifying the data split with :code:`split` or configuration with\\n :code:`name`\\n\\nIf you needed to add a prompt template, you would simply pass it into the tokenizer.\\nSince we\\'re fine-tuning Llama3, the tokenizer will handle all formatting for\\nus and prompt templates are optional. Other models such as Mistral\\'s :class:`~torchtune.models.mistral._tokenizer.MistralTokenizer`,\\nuse a chat template by default (:class:`~torchtune.models.mistral.MistralChatTemplate`) to format\\nall messages according to their `recommendations `_, a parameter-efficient finetuning technique,\\nand show you how you can use torchtune to finetune a Llama2 model with LoRA.\\nIf you already know what LoRA is and want to get straight to running\\nyour own LoRA finetune in torchtune, you can jump to :ref:`LoRA finetuning recipe in torchtune`.\\n\\n.. grid:: 2\\n\\n .. grid-item-card:: :octicon:`mortar-board;1em;` What you will learn\\n\\n * What LoRA is and how it saves memory during finetuning\\n * An overview of LoRA components in torchtune\\n * How to run a LoRA finetune using torchtune\\n * How to experiment with different LoRA configurations\\n\\n .. grid-item-card:: :octicon:`list-unordered;1em;` Prerequisites\\n\\n * Be familiar with :ref:`torchtune`\\n * Make sure to :ref:`install torchtune`\\n * Make sure you have downloaded the :ref:`Llama2-7B model weights`\\n\\nWhat is LoRA?\\n-------------\\n\\n`LoRA `_ is an adapter-based method for\\nparameter-efficient finetuning that adds trainable low-rank decomposition matrices to different layers of a neural network,\\nthen freezes the network's remaining parameters. LoRA is most commonly applied to\\ntransformer models, in which case it is common to add the low-rank matrices\\nto some of the linear projections in each transformer layer's self-attention.\\n\\n.. note::\\n\\n If you're unfamiliar, check out these references for the `definition of rank `_\\n and discussion of `low-rank approximations `_.\\n\\nBy finetuning with LoRA (as opposed to finetuning all model parameters),\\nyou can expect to see memory savings due to a substantial reduction in the\\nnumber of parameters with gradients. When using an optimizer with momentum,\\nlike `AdamW `_.\\nMake sure that you have first downloaded the Llama2 weights and tokenizer by following :ref:`these instructions`.\\nYou can then run the following command to perform a LoRA finetune of Llama2-7B with two GPUs (each having VRAM of at least 16GB):\\n\\n.. code-block:: bash\\n\\n tune run --nnodes 1 --nproc_per_node 2 lora_finetune_distributed --config llama2/7B_lora\\n\\n.. note::\\n Make sure to point to the location of your Llama2 weights and tokenizer. This can be done\\n either by adding :code:`checkpointer.checkpoint_files=[my_model_checkpoint_path] tokenizer_checkpoint=my_tokenizer_checkpoint_path`\\n or by directly modifying the :code:`7B_lora.yaml` file. See our \"\":ref:`config_tutorial_label`\" recipe\\n for more details on how you can easily clone and modify torchtune configs.\\n\\n.. note::\\n You can modify the value of :code:`nproc_per_node` depending on (a) the number of GPUs you have available,\\n and (b) the memory constraints of your hardware.\\n\\nThe preceding command will run a LoRA finetune with torchtune\\'s factory settings, but we may want to experiment a bit.\\nLet\\'s take a closer look at some of the :code:`lora_finetune_distributed` config.\\n\\n.. code-block:: yaml\\n\\n # Model Arguments\\n model:\\n _component_: lora_llama2_7b\\n lora_attn_modules: [\\'q_proj\\', \\'v_proj\\']\\n lora_rank: 8\\n lora_alpha: 16\\n ...\\n\\nWe see that the\\n'), TextContentItem(type='text', text='Result 5:\\nDocument_id:3b16c\\nContent: etune\\n:func:`torchtune.models.llama3.llama3_8b` with DoRA, you would use :func:`torchtune.models.llama3.lora_llama3_8b` with ``use_dora=True``:\\n\\n.. code-block:: bash\\n\\n tune run lora_finetune_single_device --config llama3/8B_lora_single_device \\\\\\n model.use_dora=True\\n\\n.. code-block:: yaml\\n\\n model:\\n _component_: torchtune.models.lora_llama3_8b\\n use_dora: True\\n\\nSince DoRA extends LoRA, the parameters for :ref:`customizing LoRA ` are identical. You can also quantize the base model weights like in :ref:`glossary_qlora` by using ``quantize=True`` to reap\\neven more memory savings!\\n\\n.. code-block:: bash\\n\\n tune run lora_finetune_single_device --config llama3/8B_lora_single_device \\\\\\n model.apply_lora_to_mlp=True \\\\\\n model.lora_attn_modules=[\"q_proj\",\"k_proj\",\"v_proj\"] \\\\\\n model.lora_rank=16 \\\\\\n model.lora_alpha=32 \\\\\\n model.use_dora=True \\\\\\n model.quantize_base=True\\n\\n.. code-block:: yaml\\n\\n model:\\n _component_: torchtune.models.lora_llama3_8b\\n apply_lora_to_mlp: True\\n lora_attn_modules: [\"q_proj\", \"k_proj\", \"v_proj\"]\\n lora_rank: 16\\n lora_alpha: 32\\n use_dora: True\\n quantize_base: True\\n\\n\\n.. note::\\n\\n Under the hood, we\\'ve enabled DoRA by adding the :class:`~torchtune.modules.peft.DoRALinear` module, which we swap\\n out for :class:`~torchtune.modules.peft.LoRALinear` when ``use_dora=True``.\\n\\n.. _glossary_distrib:\\n\\n\\n.. TODO\\n\\n.. Distributed\\n.. -----------\\n\\n.. .. _glossary_fsdp:\\n\\n.. Fully Sharded Data Parallel (FSDP)\\n.. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\n\\n.. All our ``_distributed`` recipes use `FSDP `.\\n.. .. _glossary_fsdp2:\\n\\n'), TextContentItem(type='text', text='END of knowledge_search tool results.\\n')]), CompletionMessage(role='assistant', content=\"I'm ready to help you answer questions about Torchtune based on the documentation you provided. What's your first question?\", stop_reason=, tool_calls=[]), UserMessage(role='user', content='Tell me how to use LoRA', context=None), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name='knowledge_search', arguments={'query': 'How to use LoRA in Torchtune'})]), ToolResponseMessage(role='tool', call_id='', tool_name='knowledge_search', content=[TextContentItem(type='text', text='knowledge_search tool found 5 chunks:\\nBEGIN of knowledge_search tool results.\\n'), TextContentItem(type='text', text=\"Result 1:\\nDocument_id:14b97\\nContent: .. _lora_finetune_label:\\n\\n============================\\nFine-Tuning Llama2 with LoRA\\n============================\\n\\nThis guide will teach you about `LoRA `_, a parameter-efficient finetuning technique,\\nand show you how you can use torchtune to finetune a Llama2 model with LoRA.\\nIf you already know what LoRA is and want to get straight to running\\nyour own LoRA finetune in torchtune, you can jump to :ref:`LoRA finetuning recipe in torchtune`.\\n\\n.. grid:: 2\\n\\n .. grid-item-card:: :octicon:`mortar-board;1em;` What you will learn\\n\\n * What LoRA is and how it saves memory during finetuning\\n * An overview of LoRA components in torchtune\\n * How to run a LoRA finetune using torchtune\\n * How to experiment with different LoRA configurations\\n\\n .. grid-item-card:: :octicon:`list-unordered;1em;` Prerequisites\\n\\n * Be familiar with :ref:`torchtune`\\n * Make sure to :ref:`install torchtune`\\n * Make sure you have downloaded the :ref:`Llama2-7B model weights`\\n\\nWhat is LoRA?\\n-------------\\n\\n`LoRA `_ is an adapter-based method for\\nparameter-efficient finetuning that adds trainable low-rank decomposition matrices to different layers of a neural network,\\nthen freezes the network's remaining parameters. LoRA is most commonly applied to\\ntransformer models, in which case it is common to add the low-rank matrices\\nto some of the linear projections in each transformer layer's self-attention.\\n\\n.. note::\\n\\n If you're unfamiliar, check out these references for the `definition of rank `_\\n and discussion of `low-rank approximations `_.\\n\\nBy finetuning with LoRA (as opposed to finetuning all model parameters),\\nyou can expect to see memory savings due to a substantial reduction in the\\nnumber of parameters with gradients. When using an optimizer with momentum,\\nlike `AdamW ` alone will not handle the definition of which parameters are trainable.\\n See :ref:`below` for how to do this.\\n\\nLet\\'s inspect each of these models a bit more closely.\\n\\n.. code-block:: bash\\n\\n # Print the first layer\\'s self-attention in the usual Llama2 model\\n >>> print(base_model.layers[0].attn)\\n MultiHeadAttention(\\n (q_proj): Linear(in_features=4096, out_features=4096, bias=False)\\n (k_proj): Linear(in_features=4096, out_features=4096, bias=False)\\n (v_proj): Linear(in_features=4096, out_features=4096, bias=False)\\n (output_proj): Linear(in_features=4096, out_features=4096, bias=False)\\n (pos_embeddings): RotaryPositionalEmbeddings()\\n )\\n\\n # Print the same for Llama2 with LoRA weights\\n >>> print(lora_model.layers[0].attn)\\n MultiHeadAttention(\\n (q_proj): LoRALinear(\\n (dropout): Dropout(p=0.0, inplace=False)\\n \\n'), TextContentItem(type='text', text='Result 3:\\nDocument_id:14b97\\nContent: 06% of all params are trainable.\\n\\n.. note::\\n If you are directly using the LoRA recipe (as detailed :ref:`here`), you need only pass the\\n relevant checkpoint path. Loading model weights and setting trainable parameters will be taken care\\n of in the recipe.\\n\\n\\n.. _lora_recipe_label:\\n\\nLoRA finetuning recipe in torchtune\\n-----------------------------------\\n\\nFinally, we can put it all together and finetune a model using torchtune\\'s `LoRA recipe `_.\\nMake sure that you have first downloaded the Llama2 weights and tokenizer by following :ref:`these instructions`.\\nYou can then run the following command to perform a LoRA finetune of Llama2-7B with two GPUs (each having VRAM of at least 16GB):\\n\\n.. code-block:: bash\\n\\n tune run --nnodes 1 --nproc_per_node 2 lora_finetune_distributed --config llama2/7B_lora\\n\\n.. note::\\n Make sure to point to the location of your Llama2 weights and tokenizer. This can be done\\n either by adding :code:`checkpointer.checkpoint_files=[my_model_checkpoint_path] tokenizer_checkpoint=my_tokenizer_checkpoint_path`\\n or by directly modifying the :code:`7B_lora.yaml` file. See our \"\":ref:`config_tutorial_label`\" recipe\\n for more details on how you can easily clone and modify torchtune configs.\\n\\n.. note::\\n You can modify the value of :code:`nproc_per_node` depending on (a) the number of GPUs you have available,\\n and (b) the memory constraints of your hardware.\\n\\nThe preceding command will run a LoRA finetune with torchtune\\'s factory settings, but we may want to experiment a bit.\\nLet\\'s take a closer look at some of the :code:`lora_finetune_distributed` config.\\n\\n.. code-block:: yaml\\n\\n # Model Arguments\\n model:\\n _component_: lora_llama2_7b\\n lora_attn_modules: [\\'q_proj\\', \\'v_proj\\']\\n lora_rank: 8\\n lora_alpha: 16\\n ...\\n\\nWe see that the\\n'), TextContentItem(type='text', text='Result 4:\\nDocument_id:14b97\\nContent: from our Llama2\\nmodel without any wrappers or custom checkpoint conversion logic.\\n\\n.. code-block:: python\\n\\n # Assuming that base_model already has the pretrained Llama2 weights,\\n # this will directly load them into your LoRA model without any conversion necessary.\\n lora_model.load_state_dict(base_model.state_dict(), strict=False)\\n\\n.. note::\\n Whenever loading weights with :code:`strict=False`, you should verify that any missing or extra keys in\\n the loaded :code:`state_dict` are as expected. torchtune\\'s LoRA recipes do this by default via\\n :func:`validate_missing_and_unexpected_for_lora() `.\\n\\nOnce we\\'ve loaded the base model weights, we also want to set only LoRA parameters to trainable.\\n\\n.. _setting_trainable_params:\\n\\n.. code-block:: python\\n\\n from torchtune.modules.peft.peft_utils import get_adapter_params, set_trainable_params\\n\\n # Fetch all params from the model that are associated with LoRA.\\n lora_params = get_adapter_params(lora_model)\\n\\n # Set requires_grad=True on lora_params, and requires_grad=False on all others.\\n set_trainable_params(lora_model, lora_params)\\n\\n # Print the total number of parameters\\n total_params = sum([p.numel() for p in lora_model.parameters()])\\n trainable_params = sum([p.numel() for p in lora_model.parameters() if p.requires_grad])\\n print(\\n f\"\"\"\\n {total_params} total params,\\n {trainable_params}\" trainable params,\\n {(100.0 * trainable_params / total_params):.2f}% of all params are trainable.\\n \"\"\"\\n )\\n\\n 6742609920 total params,\\n 4194304 trainable params,\\n 0.06% of all params are trainable.\\n\\n.. note::\\n If you are directly using the LoRA recipe (as detailed :ref:`here`), you need only pass the\\n relevant checkpoint path. Loading model weights and setting trainable parameters will be taken care\\n of in the recipe.\\n\\n\\n.. _lora_recipe_label:\\n\\nLoRA finetuning recipe in torchtune\\n-----------------------------------\\n\\nFinally, we can put it all together and finetune a model using torchtune\\'s `LoRA recipe , tool_prompt_format=None, system_message_behavior=)), ('tool_prompt_format', None), ('tools', [ToolDefinition(tool_name='knowledge_search', description='Search for information in a database.', parameters={'query': ToolParamDefinition(param_type='string', description='The query to search for. Can be a natural language sentence or keywords.', required=True, default=None)})])]": {
"chunks": [
{
"event": {
@@ -6111,7 +6946,7 @@
{
"event": {
"delta": {
- "text": " use LoRA, you can follow these steps",
+ "text": " use LoRA in Torchtune, you can follow these",
"type": "text"
},
"event_type": {
@@ -6126,7 +6961,7 @@
{
"event": {
"delta": {
- "text": ":\n\n1. Install the necessary packages",
+ "text": " steps:\n\n1. Install Torchtune and its dependencies",
"type": "text"
},
"event_type": {
@@ -6141,7 +6976,7 @@
{
"event": {
"delta": {
- "text": ", including torchtune and the Llama2 model.\n",
+ "text": ".\n2. Download the Llama",
"type": "text"
},
"event_type": {
@@ -6156,7 +6991,7 @@
{
"event": {
"delta": {
- "text": "2. Load the Llama2 model and specify which",
+ "text": "2 weights and tokenizer.\n3. Use the `l",
"type": "text"
},
"event_type": {
@@ -6171,7 +7006,7 @@
{
"event": {
"delta": {
- "text": " layers to apply LoRA to.\n3.",
+ "text": "ora_llama2_7b` model in Torchtune",
"type": "text"
},
"event_type": {
@@ -6186,7 +7021,7 @@
{
"event": {
"delta": {
- "text": " Define the LoRA parameters, such as the rank and",
+ "text": ", which applies LoRA to the",
"type": "text"
},
"event_type": {
@@ -6201,7 +7036,7 @@
{
"event": {
"delta": {
- "text": " alpha values.\n4. Train the model using",
+ "text": " Q and V projections by default.\n4.",
"type": "text"
},
"event_type": {
@@ -6216,7 +7051,7 @@
{
"event": {
"delta": {
- "text": " the LoRA fine-tuning recipe in torchtune",
+ "text": " Set the `lora_attn_modules` argument to",
"type": "text"
},
"event_type": {
@@ -6231,7 +7066,7 @@
{
"event": {
"delta": {
- "text": ".\n5. Use the trained model for inference or further fine",
+ "text": " apply LoRA to all linear",
"type": "text"
},
"event_type": {
@@ -6246,7 +7081,7 @@
{
"event": {
"delta": {
- "text": "-tuning.\n\nHere is an example of how to apply Lo",
+ "text": " layers in the self-attention.\n",
"type": "text"
},
"event_type": {
@@ -6261,7 +7096,7 @@
{
"event": {
"delta": {
- "text": "RA to Llama2-7B:\n\n",
+ "text": "5. Increase the rank and",
"type": "text"
},
"event_type": {
@@ -6276,7 +7111,7 @@
{
"event": {
"delta": {
- "text": "```python\nfrom torchtune.models.llama2 import",
+ "text": " alpha values to experiment with different LoRA",
"type": "text"
},
"event_type": {
@@ -6291,7 +7126,7 @@
{
"event": {
"delta": {
- "text": " llama2_7b, lora_llama2",
+ "text": " configurations.\n6. Run the LoRA finetuning",
"type": "text"
},
"event_type": {
@@ -6306,7 +7141,7 @@
{
"event": {
"delta": {
- "text": "_7b\n\n# Build Llama2 without any Lo",
+ "text": " recipe in Torchtune using the `lora_finet",
"type": "text"
},
"event_type": {
@@ -6321,7 +7156,7 @@
{
"event": {
"delta": {
- "text": "RA layers\nbase_model = llama2_7b()\n\n",
+ "text": "une_distributed` command.\n7.",
"type": "text"
},
"event_type": {
@@ -6336,7 +7171,7 @@
{
"event": {
"delta": {
- "text": "# The default settings for lora_llama",
+ "text": " Monitor the loss curves and adjust the Lo",
"type": "text"
},
"event_type": {
@@ -6351,7 +7186,7 @@
{
"event": {
"delta": {
- "text": "2_7b will match those for",
+ "text": "RA configuration as needed to trade off memory and model performance.\n\n",
"type": "text"
},
"event_type": {
@@ -6366,7 +7201,7 @@
{
"event": {
"delta": {
- "text": " llama2_7b\n# We just need to define",
+ "text": "By following these steps, you can effectively use LoRA in",
"type": "text"
},
"event_type": {
@@ -6381,7 +7216,7 @@
{
"event": {
"delta": {
- "text": " which layers we want LoRA applied to.\n# Within each",
+ "text": " Torchtune to fine-tune Llama",
"type": "text"
},
"event_type": {
@@ -6396,292 +7231,7 @@
{
"event": {
"delta": {
- "text": " self-attention, we can choose from [\"q_proj\",",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": " \"k_proj\", \"v_proj\", and \"output_proj\"]",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": ".\n# We can also set apply_lora_to_mlp=True",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": " or apply_lora_to_output=True to apply LoRA to other",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": " linear\n# layers outside of the self-",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": "attention.\nlora_model = lora_llama2_7",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": "b(lora_attn_modules=[\"q_proj\", \"v_proj\"])\n",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": "```\n\nYou can also customize the LoRA parameters",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": " by specifying the rank and alpha values:\n\n```python",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": "\nlora_model = lora_llama2_7b",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": "(lora_attn_modules=[\"q_proj\", \"v_proj\"],",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": " lora_rank=8, lora_alpha=16)\n``",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": "`\n\nTo train the model using the LoRA",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": " fine-tuning recipe in torchtune, you can use",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": " the following command:\n\n```bash\ntune run lora_f",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": "inetune_single_device --config llama3/8B_l",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": "ora_single_device\n```\n\nThis will",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": " load the Llama3-8B-Instruct checkpoint and",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": " tokenizer from the specified directory, then save a final checkpoint in the",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": " same directory following the original format.",
+ "text": "2 models with a low memory footprint.",
"type": "text"
},
"event_type": {
@@ -6714,854 +7264,7 @@
],
"type": "generator"
},
- "('meta-llama/Llama-3.1-8B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='I am attaching some documentation for Torchtune. Help me answer questions I will ask next.', context=None), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name='knowledge_search', arguments={'query': 'Torchtune documentation'})]), ToolResponseMessage(role='tool', call_id='', tool_name='knowledge_search', content=[TextContentItem(type='text', text='knowledge_search tool found 5 chunks:\\nBEGIN of knowledge_search tool results.\\n'), TextContentItem(type='text', text='Result 1:\\nDocument_id:71183\\nContent: conversational data, :func:`~torchtune.datasets.chat_dataset` seems to be a good fit. For any\\ncustom local dataset we always need to specify ``source``, ``data_files``, and ``split`` for any dataset\\nbuilder in torchtune. For :func:`~torchtune.datasets.chat_dataset`, we additionally need to specify\\n``conversation_column`` and ``conversation_style``. Our data follows the ``\"sharegpt\"`` format, so\\nwe can specify that here. Altogether, our :func:`~torchtune.datasets.chat_dataset` call should\\nlook like so:\\n\\n.. code-block:: python\\n\\n from torchtune.datasets import chat_dataset\\n from torchtune.models.llama3 import llama3_tokenizer\\n\\n tokenizer = llama3_tokenizer(\"/tmp/Meta-Llama-3-8B-Instruct/original/tokenizer.model\")\\n ds = chat_dataset(\\n tokenizer=tokenizer,\\n source=\"json\",\\n data_files=\"data/my_data.json\",\\n split=\"train\",\\n conversation_column=\"dialogue\",\\n conversation_style=\"sharegpt\",\\n )\\n\\n.. code-block:: yaml\\n\\n # In config\\n tokenizer:\\n _component_: torchtune.models.llama3.llama3_tokenizer\\n path: /tmp/Meta-Llama-3-8B-Instruct/original/tokenizer.model\\n\\n dataset:\\n _component_: torchtune.datasets.chat_dataset\\n source: json\\n data_files: data/my_data.json\\n split: train\\n conversation_column: dialogue\\n conversation_style: sharegpt\\n\\n.. note::\\n You can pass in any keyword argument for `load_dataset `_ into all our\\n Dataset classes and they will honor them. This is useful for common parameters\\n such as specifying the data split with :code:`split` or configuration with\\n :code:`name`\\n\\nIf you needed to add a prompt template, you would simply pass it into the tokenizer.\\nSince we\\'re fine-tuning Llama3, the tokenizer will handle all formatting for\\nus and prompt templates are optional. Other models such as Mistral\\'s :class:`~torchtune.models.mistral._tokenizer.MistralTokenizer`,\\nuse a chat template by default (:class:`~torchtune.models.mistral.MistralChatTemplate`) to format\\nall messages according to their `recommendations `_, a parameter-efficient finetuning technique,\\nand show you how you can use torchtune to finetune a Llama2 model with LoRA.\\nIf you already know what LoRA is and want to get straight to running\\nyour own LoRA finetune in torchtune, you can jump to :ref:`LoRA finetuning recipe in torchtune`.\\n\\n.. grid:: 2\\n\\n .. grid-item-card:: :octicon:`mortar-board;1em;` What you will learn\\n\\n * What LoRA is and how it saves memory during finetuning\\n * An overview of LoRA components in torchtune\\n * How to run a LoRA finetune using torchtune\\n * How to experiment with different LoRA configurations\\n\\n .. grid-item-card:: :octicon:`list-unordered;1em;` Prerequisites\\n\\n * Be familiar with :ref:`torchtune`\\n * Make sure to :ref:`install torchtune`\\n * Make sure you have downloaded the :ref:`Llama2-7B model weights`\\n\\nWhat is LoRA?\\n-------------\\n\\n`LoRA `_ is an adapter-based method for\\nparameter-efficient finetuning that adds trainable low-rank decomposition matrices to different layers of a neural network,\\nthen freezes the network's remaining parameters. LoRA is most commonly applied to\\ntransformer models, in which case it is common to add the low-rank matrices\\nto some of the linear projections in each transformer layer's self-attention.\\n\\n.. note::\\n\\n If you're unfamiliar, check out these references for the `definition of rank `_\\n and discussion of `low-rank approximations `_.\\n\\nBy finetuning with LoRA (as opposed to finetuning all model parameters),\\nyou can expect to see memory savings due to a substantial reduction in the\\nnumber of parameters with gradients. When using an optimizer with momentum,\\nlike `AdamW `_.\\nMake sure that you have first downloaded the Llama2 weights and tokenizer by following :ref:`these instructions`.\\nYou can then run the following command to perform a LoRA finetune of Llama2-7B with two GPUs (each having VRAM of at least 16GB):\\n\\n.. code-block:: bash\\n\\n tune run --nnodes 1 --nproc_per_node 2 lora_finetune_distributed --config llama2/7B_lora\\n\\n.. note::\\n Make sure to point to the location of your Llama2 weights and tokenizer. This can be done\\n either by adding :code:`checkpointer.checkpoint_files=[my_model_checkpoint_path] tokenizer_checkpoint=my_tokenizer_checkpoint_path`\\n or by directly modifying the :code:`7B_lora.yaml` file. See our \"\":ref:`config_tutorial_label`\" recipe\\n for more details on how you can easily clone and modify torchtune configs.\\n\\n.. note::\\n You can modify the value of :code:`nproc_per_node` depending on (a) the number of GPUs you have available,\\n and (b) the memory constraints of your hardware.\\n\\nThe preceding command will run a LoRA finetune with torchtune\\'s factory settings, but we may want to experiment a bit.\\nLet\\'s take a closer look at some of the :code:`lora_finetune_distributed` config.\\n\\n.. code-block:: yaml\\n\\n # Model Arguments\\n model:\\n _component_: lora_llama2_7b\\n lora_attn_modules: [\\'q_proj\\', \\'v_proj\\']\\n lora_rank: 8\\n lora_alpha: 16\\n ...\\n\\nWe see that the\\n'), TextContentItem(type='text', text='Result 5:\\nDocument_id:84988\\nContent: etune\\n:func:`torchtune.models.llama3.llama3_8b` with DoRA, you would use :func:`torchtune.models.llama3.lora_llama3_8b` with ``use_dora=True``:\\n\\n.. code-block:: bash\\n\\n tune run lora_finetune_single_device --config llama3/8B_lora_single_device \\\\\\n model.use_dora=True\\n\\n.. code-block:: yaml\\n\\n model:\\n _component_: torchtune.models.lora_llama3_8b\\n use_dora: True\\n\\nSince DoRA extends LoRA, the parameters for :ref:`customizing LoRA ` are identical. You can also quantize the base model weights like in :ref:`glossary_qlora` by using ``quantize=True`` to reap\\neven more memory savings!\\n\\n.. code-block:: bash\\n\\n tune run lora_finetune_single_device --config llama3/8B_lora_single_device \\\\\\n model.apply_lora_to_mlp=True \\\\\\n model.lora_attn_modules=[\"q_proj\",\"k_proj\",\"v_proj\"] \\\\\\n model.lora_rank=16 \\\\\\n model.lora_alpha=32 \\\\\\n model.use_dora=True \\\\\\n model.quantize_base=True\\n\\n.. code-block:: yaml\\n\\n model:\\n _component_: torchtune.models.lora_llama3_8b\\n apply_lora_to_mlp: True\\n lora_attn_modules: [\"q_proj\", \"k_proj\", \"v_proj\"]\\n lora_rank: 16\\n lora_alpha: 32\\n use_dora: True\\n quantize_base: True\\n\\n\\n.. note::\\n\\n Under the hood, we\\'ve enabled DoRA by adding the :class:`~torchtune.modules.peft.DoRALinear` module, which we swap\\n out for :class:`~torchtune.modules.peft.LoRALinear` when ``use_dora=True``.\\n\\n.. _glossary_distrib:\\n\\n\\n.. TODO\\n\\n.. Distributed\\n.. -----------\\n\\n.. .. _glossary_fsdp:\\n\\n.. Fully Sharded Data Parallel (FSDP)\\n.. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\\n\\n.. All our ``_distributed`` recipes use `FSDP `.\\n.. .. _glossary_fsdp2:\\n\\n'), TextContentItem(type='text', text='END of knowledge_search tool results.\\n')]), CompletionMessage(role='assistant', content='You can ask your question now. I will help you answer it using the knowledge_search tool results.', stop_reason=, tool_calls=[]), UserMessage(role='user', content='Tell me how to use LoRA', context=None)])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=