forked from phoenix-oss/llama-stack-mirror
rebase eval test w/ tool_runtime fixtures (#773)
# What does this PR do? - fix eval tests to include tool_runtime fixtures - rebase eval for extracting memory retrieval context ## Test Plan ``` pytest -v -s -m meta_reference_eval_together_inference_huggingface_datasetio llama_stack/providers/tests/eval/test_eval.py pytest -v -s -m braintrust_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py ``` - With notebook: https://gist.github.com/yanxi0830/1260a6cb7ec42498a195b88422462a34 ## Sources Please link relevant resources if necessary. ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Ran pre-commit to handle lint / formatting issues. - [ ] Read the [contributor guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md), Pull Request section? - [ ] Updated relevant documentation. - [ ] Wrote necessary unit or integration tests.
This commit is contained in:
parent
d0a25dd453
commit
6deef1ece0
3 changed files with 24 additions and 3 deletions
|
@ -16,6 +16,9 @@ from llama_stack.apis.scoring import Scoring
|
|||
from llama_stack.distribution.datatypes import Api
|
||||
from llama_stack.providers.datatypes import EvalTasksProtocolPrivate
|
||||
|
||||
from llama_stack.providers.inline.agents.meta_reference.agent_instance import (
|
||||
MEMORY_QUERY_TOOL,
|
||||
)
|
||||
from llama_stack.providers.utils.common.data_schema_validator import (
|
||||
ColumnName,
|
||||
get_valid_schemas,
|
||||
|
@ -146,8 +149,12 @@ class MetaReferenceEvalImpl(
|
|||
# check if there's a memory retrieval step and extract the context
|
||||
memory_rag_context = None
|
||||
for step in final_event.turn.steps:
|
||||
if step.step_type == StepType.memory_retrieval.value:
|
||||
memory_rag_context = " ".join(x.text for x in step.inserted_context)
|
||||
if step.step_type == StepType.tool_execution.value:
|
||||
for tool_response in step.tool_responses:
|
||||
if tool_response.tool_name == MEMORY_QUERY_TOOL:
|
||||
memory_rag_context = " ".join(
|
||||
x.text for x in tool_response.content
|
||||
)
|
||||
|
||||
agent_generation = {}
|
||||
agent_generation[ColumnName.generated_answer.value] = (
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue