forked from phoenix-oss/llama-stack-mirror
Kill llama stack configure
(#371)
* remove configure * build msg * wip * build->run * delete prints * docs * fix docs, kill configure * precommit * update fireworks build * docs * clean up build * comments * fix * test * remove baking build.yaml into docker * fix msg, urls * configure msg
This commit is contained in:
parent
d289afdbde
commit
748606195b
11 changed files with 248 additions and 401 deletions
|
@ -1,53 +1,56 @@
|
|||
# Developer Guide: Assemble a Llama Stack Distribution
|
||||
|
||||
> NOTE: This doc may be out-of-date.
|
||||
|
||||
This guide will walk you through the steps to get started with building a Llama Stack distributiom from scratch with your choice of API providers. Please see the [Getting Started Guide](./getting_started.md) if you just want the basic steps to start a Llama Stack distribution.
|
||||
This guide will walk you through the steps to get started with building a Llama Stack distributiom from scratch with your choice of API providers. Please see the [Getting Started Guide](https://llama-stack.readthedocs.io/en/latest/getting_started/index.html) if you just want the basic steps to start a Llama Stack distribution.
|
||||
|
||||
## Step 1. Build
|
||||
In the following steps, imagine we'll be working with a `Meta-Llama3.1-8B-Instruct` model. We will name our build `8b-instruct` to help us remember the config. We will start build our distribution (in the form of a Conda environment, or Docker image). In this step, we will specify:
|
||||
- `name`: the name for our distribution (e.g. `8b-instruct`)
|
||||
|
||||
### Llama Stack Build Options
|
||||
|
||||
```
|
||||
llama stack build -h
|
||||
```
|
||||
We will start build our distribution (in the form of a Conda environment, or Docker image). In this step, we will specify:
|
||||
- `name`: the name for our distribution (e.g. `my-stack`)
|
||||
- `image_type`: our build image type (`conda | docker`)
|
||||
- `distribution_spec`: our distribution specs for specifying API providers
|
||||
- `description`: a short description of the configurations for the distribution
|
||||
- `providers`: specifies the underlying implementation for serving each API endpoint
|
||||
- `image_type`: `conda` | `docker` to specify whether to build the distribution in the form of Docker image or Conda environment.
|
||||
|
||||
After this step is complete, a file named `<name>-build.yaml` and template file `<name>-run.yaml` will be generated and saved at the output file path specified at the end of the command.
|
||||
|
||||
At the end of build command, we will generate `<name>-build.yaml` file storing the build configurations.
|
||||
::::{tab-set}
|
||||
:::{tab-item} Building from Scratch
|
||||
|
||||
After this step is complete, a file named `<name>-build.yaml` will be generated and saved at the output file path specified at the end of the command.
|
||||
|
||||
#### Building from scratch
|
||||
- For a new user, we could start off with running `llama stack build` which will allow you to a interactively enter wizard where you will be prompted to enter build configurations.
|
||||
```
|
||||
llama stack build
|
||||
|
||||
> Enter a name for your Llama Stack (e.g. my-local-stack): my-stack
|
||||
> Enter the image type you want your Llama Stack to be built as (docker or conda): conda
|
||||
|
||||
Llama Stack is composed of several APIs working together. Let's select
|
||||
the provider types (implementations) you want to use for these APIs.
|
||||
|
||||
Tip: use <TAB> to see options for the providers.
|
||||
|
||||
> Enter provider for API inference: meta-reference
|
||||
> Enter provider for API safety: meta-reference
|
||||
> Enter provider for API agents: meta-reference
|
||||
> Enter provider for API memory: meta-reference
|
||||
> Enter provider for API datasetio: meta-reference
|
||||
> Enter provider for API scoring: meta-reference
|
||||
> Enter provider for API eval: meta-reference
|
||||
> Enter provider for API telemetry: meta-reference
|
||||
|
||||
> (Optional) Enter a short description for your Llama Stack:
|
||||
|
||||
You can now edit ~/.llama/distributions/llamastack-my-local-stack/my-local-stack-run.yaml and run `llama stack run ~/.llama/distributions/llamastack-my-local-stack/my-local-stack-run.yaml`
|
||||
```
|
||||
:::
|
||||
|
||||
Running the command above will allow you to fill in the configuration to build your Llama Stack distribution, you will see the following outputs.
|
||||
|
||||
```
|
||||
> Enter an unique name for identifying your Llama Stack build distribution (e.g. my-local-stack): 8b-instruct
|
||||
> Enter the image type you want your distribution to be built with (docker or conda): conda
|
||||
|
||||
Llama Stack is composed of several APIs working together. Let's configure the providers (implementations) you want to use for these APIs.
|
||||
> Enter the API provider for the inference API: (default=meta-reference): meta-reference
|
||||
> Enter the API provider for the safety API: (default=meta-reference): meta-reference
|
||||
> Enter the API provider for the agents API: (default=meta-reference): meta-reference
|
||||
> Enter the API provider for the memory API: (default=meta-reference): meta-reference
|
||||
> Enter the API provider for the telemetry API: (default=meta-reference): meta-reference
|
||||
|
||||
> (Optional) Enter a short description for your Llama Stack distribution:
|
||||
|
||||
Build spec configuration saved at ~/.conda/envs/llamastack-my-local-llama-stack/8b-instruct-build.yaml
|
||||
```
|
||||
|
||||
**Ollama (optional)**
|
||||
|
||||
If you plan to use Ollama for inference, you'll need to install the server [via these instructions](https://ollama.com/download).
|
||||
|
||||
|
||||
#### Building from templates
|
||||
:::{tab-item} Building from a template
|
||||
- To build from alternative API providers, we provide distribution templates for users to get started building a distribution backed by different providers.
|
||||
|
||||
The following command will allow you to see the available templates and their corresponding providers.
|
||||
|
@ -59,18 +62,21 @@ llama stack build --list-templates
|
|||
+------------------------------+--------------------------------------------+----------------------------------------------------------------------------------+
|
||||
| Template Name | Providers | Description |
|
||||
+------------------------------+--------------------------------------------+----------------------------------------------------------------------------------+
|
||||
| bedrock | { | Use Amazon Bedrock APIs. |
|
||||
| | "inference": "remote::bedrock", | |
|
||||
| | "memory": "meta-reference", | |
|
||||
| hf-serverless | { | Like local, but use Hugging Face Inference API (serverless) for running LLM |
|
||||
| | "inference": "remote::hf::serverless", | inference. |
|
||||
| | "memory": "meta-reference", | See https://hf.co/docs/api-inference. |
|
||||
| | "safety": "meta-reference", | |
|
||||
| | "agents": "meta-reference", | |
|
||||
| | "telemetry": "meta-reference" | |
|
||||
| | } | |
|
||||
+------------------------------+--------------------------------------------+----------------------------------------------------------------------------------+
|
||||
| databricks | { | Use Databricks for running LLM inference |
|
||||
| | "inference": "remote::databricks", | |
|
||||
| | "memory": "meta-reference", | |
|
||||
| | "safety": "meta-reference", | |
|
||||
| together | { | Use Together.ai for running LLM inference |
|
||||
| | "inference": "remote::together", | |
|
||||
| | "memory": [ | |
|
||||
| | "meta-reference", | |
|
||||
| | "remote::weaviate" | |
|
||||
| | ], | |
|
||||
| | "safety": "remote::together", | |
|
||||
| | "agents": "meta-reference", | |
|
||||
| | "telemetry": "meta-reference" | |
|
||||
| | } | |
|
||||
|
@ -88,17 +94,37 @@ llama stack build --list-templates
|
|||
| | "telemetry": "meta-reference" | |
|
||||
| | } | |
|
||||
+------------------------------+--------------------------------------------+----------------------------------------------------------------------------------+
|
||||
| hf-endpoint | { | Like local, but use Hugging Face Inference Endpoints for running LLM inference. |
|
||||
| | "inference": "remote::hf::endpoint", | See https://hf.co/docs/api-endpoints. |
|
||||
| databricks | { | Use Databricks for running LLM inference |
|
||||
| | "inference": "remote::databricks", | |
|
||||
| | "memory": "meta-reference", | |
|
||||
| | "safety": "meta-reference", | |
|
||||
| | "agents": "meta-reference", | |
|
||||
| | "telemetry": "meta-reference" | |
|
||||
| | } | |
|
||||
+------------------------------+--------------------------------------------+----------------------------------------------------------------------------------+
|
||||
| hf-serverless | { | Like local, but use Hugging Face Inference API (serverless) for running LLM |
|
||||
| | "inference": "remote::hf::serverless", | inference. |
|
||||
| | "memory": "meta-reference", | See https://hf.co/docs/api-inference. |
|
||||
| vllm | { | Like local, but use vLLM for running LLM inference |
|
||||
| | "inference": "vllm", | |
|
||||
| | "memory": "meta-reference", | |
|
||||
| | "safety": "meta-reference", | |
|
||||
| | "agents": "meta-reference", | |
|
||||
| | "telemetry": "meta-reference" | |
|
||||
| | } | |
|
||||
+------------------------------+--------------------------------------------+----------------------------------------------------------------------------------+
|
||||
| tgi | { | Use TGI for running LLM inference |
|
||||
| | "inference": "remote::tgi", | |
|
||||
| | "memory": [ | |
|
||||
| | "meta-reference", | |
|
||||
| | "remote::chromadb", | |
|
||||
| | "remote::pgvector" | |
|
||||
| | ], | |
|
||||
| | "safety": "meta-reference", | |
|
||||
| | "agents": "meta-reference", | |
|
||||
| | "telemetry": "meta-reference" | |
|
||||
| | } | |
|
||||
+------------------------------+--------------------------------------------+----------------------------------------------------------------------------------+
|
||||
| bedrock | { | Use Amazon Bedrock APIs. |
|
||||
| | "inference": "remote::bedrock", | |
|
||||
| | "memory": "meta-reference", | |
|
||||
| | "safety": "meta-reference", | |
|
||||
| | "agents": "meta-reference", | |
|
||||
| | "telemetry": "meta-reference" | |
|
||||
|
@ -140,31 +166,8 @@ llama stack build --list-templates
|
|||
| | "telemetry": "meta-reference" | |
|
||||
| | } | |
|
||||
+------------------------------+--------------------------------------------+----------------------------------------------------------------------------------+
|
||||
| tgi | { | Use TGI for running LLM inference |
|
||||
| | "inference": "remote::tgi", | |
|
||||
| | "memory": [ | |
|
||||
| | "meta-reference", | |
|
||||
| | "remote::chromadb", | |
|
||||
| | "remote::pgvector" | |
|
||||
| | ], | |
|
||||
| | "safety": "meta-reference", | |
|
||||
| | "agents": "meta-reference", | |
|
||||
| | "telemetry": "meta-reference" | |
|
||||
| | } | |
|
||||
+------------------------------+--------------------------------------------+----------------------------------------------------------------------------------+
|
||||
| together | { | Use Together.ai for running LLM inference |
|
||||
| | "inference": "remote::together", | |
|
||||
| | "memory": [ | |
|
||||
| | "meta-reference", | |
|
||||
| | "remote::weaviate" | |
|
||||
| | ], | |
|
||||
| | "safety": "remote::together", | |
|
||||
| | "agents": "meta-reference", | |
|
||||
| | "telemetry": "meta-reference" | |
|
||||
| | } | |
|
||||
+------------------------------+--------------------------------------------+----------------------------------------------------------------------------------+
|
||||
| vllm | { | Like local, but use vLLM for running LLM inference |
|
||||
| | "inference": "vllm", | |
|
||||
| hf-endpoint | { | Like local, but use Hugging Face Inference Endpoints for running LLM inference. |
|
||||
| | "inference": "remote::hf::endpoint", | See https://hf.co/docs/api-endpoints. |
|
||||
| | "memory": "meta-reference", | |
|
||||
| | "safety": "meta-reference", | |
|
||||
| | "agents": "meta-reference", | |
|
||||
|
@ -175,6 +178,7 @@ llama stack build --list-templates
|
|||
|
||||
You may then pick a template to build your distribution with providers fitted to your liking.
|
||||
|
||||
For example, to build a distribution with TGI as the inference provider, you can run:
|
||||
```
|
||||
llama stack build --template tgi
|
||||
```
|
||||
|
@ -182,15 +186,14 @@ llama stack build --template tgi
|
|||
```
|
||||
$ llama stack build --template tgi
|
||||
...
|
||||
...
|
||||
Build spec configuration saved at ~/.conda/envs/llamastack-tgi/tgi-build.yaml
|
||||
You may now run `llama stack configure tgi` or `llama stack configure ~/.conda/envs/llamastack-tgi/tgi-build.yaml`
|
||||
You can now edit ~/.llama/distributions/llamastack-tgi/tgi-run.yaml and run `llama stack run ~/.llama/distributions/llamastack-tgi/tgi-run.yaml`
|
||||
```
|
||||
:::
|
||||
|
||||
#### Building from config file
|
||||
:::{tab-item} Building from a pre-existing build config file
|
||||
- In addition to templates, you may customize the build to your liking through editing config files and build from config files with the following command.
|
||||
|
||||
- The config file will be of contents like the ones in `llama_stack/distributions/templates/`.
|
||||
- The config file will be of contents like the ones in `llama_stack/templates/*build.yaml`.
|
||||
|
||||
```
|
||||
$ cat llama_stack/templates/ollama/build.yaml
|
||||
|
@ -210,148 +213,111 @@ image_type: conda
|
|||
```
|
||||
llama stack build --config llama_stack/templates/ollama/build.yaml
|
||||
```
|
||||
:::
|
||||
|
||||
#### How to build distribution with Docker image
|
||||
|
||||
:::{tab-item} Building Docker
|
||||
> [!TIP]
|
||||
> Podman is supported as an alternative to Docker. Set `DOCKER_BINARY` to `podman` in your environment to use Podman.
|
||||
|
||||
To build a docker image, you may start off from a template and use the `--image-type docker` flag to specify `docker` as the build image type.
|
||||
|
||||
```
|
||||
llama stack build --template local --image-type docker
|
||||
llama stack build --template ollama --image-type docker
|
||||
```
|
||||
|
||||
Alternatively, you may use a config file and set `image_type` to `docker` in our `<name>-build.yaml` file, and run `llama stack build <name>-build.yaml`. The `<name>-build.yaml` will be of contents like:
|
||||
|
||||
```
|
||||
name: local-docker-example
|
||||
distribution_spec:
|
||||
description: Use code from `llama_stack` itself to serve all llama stack APIs
|
||||
docker_image: null
|
||||
providers:
|
||||
inference: meta-reference
|
||||
memory: meta-reference-faiss
|
||||
safety: meta-reference
|
||||
agentic_system: meta-reference
|
||||
telemetry: console
|
||||
image_type: docker
|
||||
```
|
||||
|
||||
The following command allows you to build a Docker image with the name `<name>`
|
||||
```
|
||||
llama stack build --config <name>-build.yaml
|
||||
|
||||
Dockerfile created successfully in /tmp/tmp.I0ifS2c46A/DockerfileFROM python:3.10-slim
|
||||
WORKDIR /app
|
||||
$ llama stack build --template ollama --image-type docker
|
||||
...
|
||||
Dockerfile created successfully in /tmp/tmp.viA3a3Rdsg/DockerfileFROM python:3.10-slim
|
||||
...
|
||||
You can run it with: podman run -p 8000:8000 llamastack-docker-local
|
||||
Build spec configuration saved at ~/.llama/distributions/docker/docker-local-build.yaml
|
||||
|
||||
You can now edit ~/meta-llama/llama-stack/tmp/configs/ollama-run.yaml and run `llama stack run ~/meta-llama/llama-stack/tmp/configs/ollama-run.yaml`
|
||||
```
|
||||
|
||||
After this step is successful, you should be able to find the built docker image and test it with `llama stack run <path/to/run.yaml>`.
|
||||
:::
|
||||
|
||||
## Step 2. Configure
|
||||
After our distribution is built (either in form of docker or conda environment), we will run the following command to
|
||||
```
|
||||
llama stack configure [ <docker-image-name> | <path/to/name.build.yaml>]
|
||||
```
|
||||
- For `conda` environments: <path/to/name.build.yaml> would be the generated build spec saved from Step 1.
|
||||
- For `docker` images downloaded from Dockerhub, you could also use <docker-image-name> as the argument.
|
||||
- Run `docker images` to check list of available images on your machine.
|
||||
::::
|
||||
|
||||
|
||||
## Step 2. Run
|
||||
Now, let's start the Llama Stack Distribution Server. You will need the YAML configuration file which was written out at the end by the `llama stack build` step.
|
||||
|
||||
```
|
||||
$ llama stack configure tgi
|
||||
|
||||
Configuring API: inference (meta-reference)
|
||||
Enter value for model (existing: Meta-Llama3.1-8B-Instruct) (required):
|
||||
Enter value for quantization (optional):
|
||||
Enter value for torch_seed (optional):
|
||||
Enter value for max_seq_len (existing: 4096) (required):
|
||||
Enter value for max_batch_size (existing: 1) (required):
|
||||
|
||||
Configuring API: memory (meta-reference-faiss)
|
||||
|
||||
Configuring API: safety (meta-reference)
|
||||
Do you want to configure llama_guard_shield? (y/n): y
|
||||
Entering sub-configuration for llama_guard_shield:
|
||||
Enter value for model (default: Llama-Guard-3-1B) (required):
|
||||
Enter value for excluded_categories (default: []) (required):
|
||||
Enter value for disable_input_check (default: False) (required):
|
||||
Enter value for disable_output_check (default: False) (required):
|
||||
Do you want to configure prompt_guard_shield? (y/n): y
|
||||
Entering sub-configuration for prompt_guard_shield:
|
||||
Enter value for model (default: Prompt-Guard-86M) (required):
|
||||
|
||||
Configuring API: agentic_system (meta-reference)
|
||||
Enter value for brave_search_api_key (optional):
|
||||
Enter value for bing_search_api_key (optional):
|
||||
Enter value for wolfram_api_key (optional):
|
||||
|
||||
Configuring API: telemetry (console)
|
||||
|
||||
YAML configuration has been written to ~/.llama/builds/conda/tgi-run.yaml
|
||||
llama stack run ~/.llama/distributions/llamastack-my-local-stack/my-local-stack-run.yaml
|
||||
```
|
||||
|
||||
After this step is successful, you should be able to find a run configuration spec in `~/.llama/builds/conda/tgi-run.yaml` with the following contents. You may edit this file to change the settings.
|
||||
|
||||
As you can see, we did basic configuration above and configured:
|
||||
- inference to run on model `Meta-Llama3.1-8B-Instruct` (obtained from `llama model list`)
|
||||
- Llama Guard safety shield with model `Llama-Guard-3-1B`
|
||||
- Prompt Guard safety shield with model `Prompt-Guard-86M`
|
||||
|
||||
For how these configurations are stored as yaml, checkout the file printed at the end of the configuration.
|
||||
|
||||
Note that all configurations as well as models are stored in `~/.llama`
|
||||
|
||||
|
||||
## Step 3. Run
|
||||
Now, let's start the Llama Stack Distribution Server. You will need the YAML configuration file which was written out at the end by the `llama stack configure` step.
|
||||
|
||||
```
|
||||
llama stack run 8b-instruct
|
||||
```
|
||||
$ llama stack run ~/.llama/distributions/llamastack-my-local-stack/my-local-stack-run.yaml
|
||||
|
||||
You should see the Llama Stack server start and print the APIs that it is supporting
|
||||
Loaded model...
|
||||
Serving API datasets
|
||||
GET /datasets/get
|
||||
GET /datasets/list
|
||||
POST /datasets/register
|
||||
Serving API inspect
|
||||
GET /health
|
||||
GET /providers/list
|
||||
GET /routes/list
|
||||
Serving API inference
|
||||
POST /inference/chat_completion
|
||||
POST /inference/completion
|
||||
POST /inference/embeddings
|
||||
Serving API scoring_functions
|
||||
GET /scoring_functions/get
|
||||
GET /scoring_functions/list
|
||||
POST /scoring_functions/register
|
||||
Serving API scoring
|
||||
POST /scoring/score
|
||||
POST /scoring/score_batch
|
||||
Serving API memory_banks
|
||||
GET /memory_banks/get
|
||||
GET /memory_banks/list
|
||||
POST /memory_banks/register
|
||||
Serving API memory
|
||||
POST /memory/insert
|
||||
POST /memory/query
|
||||
Serving API safety
|
||||
POST /safety/run_shield
|
||||
Serving API eval
|
||||
POST /eval/evaluate
|
||||
POST /eval/evaluate_batch
|
||||
POST /eval/job/cancel
|
||||
GET /eval/job/result
|
||||
GET /eval/job/status
|
||||
Serving API shields
|
||||
GET /shields/get
|
||||
GET /shields/list
|
||||
POST /shields/register
|
||||
Serving API datasetio
|
||||
GET /datasetio/get_rows_paginated
|
||||
Serving API telemetry
|
||||
GET /telemetry/get_trace
|
||||
POST /telemetry/log_event
|
||||
Serving API models
|
||||
GET /models/get
|
||||
GET /models/list
|
||||
POST /models/register
|
||||
Serving API agents
|
||||
POST /agents/create
|
||||
POST /agents/session/create
|
||||
POST /agents/turn/create
|
||||
POST /agents/delete
|
||||
POST /agents/session/delete
|
||||
POST /agents/session/get
|
||||
POST /agents/step/get
|
||||
POST /agents/turn/get
|
||||
|
||||
```
|
||||
$ llama stack run 8b-instruct
|
||||
|
||||
> initializing model parallel with size 1
|
||||
> initializing ddp with size 1
|
||||
> initializing pipeline with size 1
|
||||
Loaded in 19.28 seconds
|
||||
NCCL version 2.20.5+cuda12.4
|
||||
Finished model load YES READY
|
||||
Serving POST /inference/batch_chat_completion
|
||||
Serving POST /inference/batch_completion
|
||||
Serving POST /inference/chat_completion
|
||||
Serving POST /inference/completion
|
||||
Serving POST /safety/run_shield
|
||||
Serving POST /agentic_system/memory_bank/attach
|
||||
Serving POST /agentic_system/create
|
||||
Serving POST /agentic_system/session/create
|
||||
Serving POST /agentic_system/turn/create
|
||||
Serving POST /agentic_system/delete
|
||||
Serving POST /agentic_system/session/delete
|
||||
Serving POST /agentic_system/memory_bank/detach
|
||||
Serving POST /agentic_system/session/get
|
||||
Serving POST /agentic_system/step/get
|
||||
Serving POST /agentic_system/turn/get
|
||||
Listening on :::5000
|
||||
INFO: Started server process [453333]
|
||||
Listening on ['::', '0.0.0.0']:5000
|
||||
INFO: Started server process [2935911]
|
||||
INFO: Waiting for application startup.
|
||||
INFO: Application startup complete.
|
||||
INFO: Uvicorn running on http://[::]:5000 (Press CTRL+C to quit)
|
||||
INFO: Uvicorn running on http://['::', '0.0.0.0']:5000 (Press CTRL+C to quit)
|
||||
INFO: 2401:db00:35c:2d2b:face:0:c9:0:54678 - "GET /models/list HTTP/1.1" 200 OK
|
||||
```
|
||||
|
||||
> [!NOTE]
|
||||
> Configuration is in `~/.llama/builds/local/conda/tgi-run.yaml`. Feel free to increase `max_seq_len`.
|
||||
|
||||
> [!IMPORTANT]
|
||||
> The "local" distribution inference server currently only supports CUDA. It will not work on Apple Silicon machines.
|
||||
|
||||
> [!TIP]
|
||||
> You might need to use the flag `--disable-ipv6` to Disable IPv6 support
|
||||
|
||||
This server is running a Llama model locally.
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue