forked from phoenix-oss/llama-stack-mirror
API Updates: fleshing out RAG APIs, introduce "llama stack" CLI command (#51)
* add tools to chat completion request
* use templates for generating system prompts
* Moved ToolPromptFormat and jinja templates to llama_models.llama3.api
* <WIP> memory changes
- inlined AgenticSystemInstanceConfig so API feels more ergonomic
- renamed it to AgentConfig, AgentInstance -> Agent
- added a MemoryConfig and `memory` parameter
- added `attachments` to input and `output_attachments` to the response
- some naming changes
* InterleavedTextAttachment -> InterleavedTextMedia, introduce memory tool
* flesh out memory banks API
* agentic loop has a RAG implementation
* faiss provider implementation
* memory client works
* re-work tool definitions, fix FastAPI issues, fix tool regressions
* fix agentic_system utils
* basic RAG seems to work
* small bug fixes for inline attachments
* Refactor custom tool execution utilities
* Bug fix, show memory retrieval steps in EventLogger
* No need for api_key for Remote providers
* add special unicode character ↵ to showcase newlines in model prompt templates
* remove api.endpoints imports
* combine datatypes.py and endpoints.py into api.py
* Attachment / add TTL api
* split batch_inference from inference
* minor import fixes
* use a single impl for ChatFormat.decode_assistant_mesage
* use interleaved_text_media_as_str() utilityt
* Fix api.datatypes imports
* Add blobfile for tiktoken
* Add ToolPromptFormat to ChatFormat.encode_message so that tools are encoded properly
* templates take optional --format={json,function_tag}
* Rag Updates
* Add `api build` subcommand -- WIP
* fix
* build + run image seems to work
* <WIP> adapters
* bunch more work to make adapters work
* api build works for conda now
* ollama remote adapter works
* Several smaller fixes to make adapters work
Also, reorganized the pattern of __init__ inside providers so
configuration can stay lightweight
* llama distribution -> llama stack + containers (WIP)
* All the new CLI for api + stack work
* Make Fireworks and Together into the Adapter format
* Some quick fixes to the CLI behavior to make it consistent
* Updated README phew
* Update cli_reference.md
* llama_toolchain/distribution -> llama_toolchain/core
* Add termcolor
* update paths
* Add a log just for consistency
* chmod +x scripts
* Fix api dependencies not getting added to configuration
* missing import lol
* Delete utils.py; move to agentic system
* Support downloading of URLs for attachments for code interpreter
* Simplify and generalize `llama api build` yay
* Update `llama stack configure` to be very simple also
* Fix stack start
* Allow building an "adhoc" distribution
* Remote `llama api []` subcommands
* Fixes to llama stack commands and update docs
* Update documentation again and add error messages to llama stack start
* llama stack start -> llama stack run
* Change name of build for less confusion
* Add pyopenapi fork to the repository, update RFC assets
* Remove conflicting annotation
* Added a "--raw" option for model template printing
---------
Co-authored-by: Hardik Shah <hjshah@fb.com>
Co-authored-by: Ashwin Bharambe <ashwin@meta.com>
Co-authored-by: Dalton Flanagan <6599399+dltn@users.noreply.github.com>
This commit is contained in:
parent
35093c0b6f
commit
7bc7785b0d
141 changed files with 8252 additions and 4032 deletions
209
llama_toolchain/post_training/api/api.py
Normal file
209
llama_toolchain/post_training/api/api.py
Normal file
|
|
@ -0,0 +1,209 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from datetime import datetime
|
||||
from enum import Enum
|
||||
|
||||
from typing import Any, Dict, List, Optional, Protocol
|
||||
|
||||
from llama_models.schema_utils import json_schema_type, webmethod
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_models.llama3.api.datatypes import * # noqa: F403
|
||||
from llama_toolchain.dataset.api import * # noqa: F403
|
||||
from llama_toolchain.common.training_types import * # noqa: F403
|
||||
|
||||
|
||||
class OptimizerType(Enum):
|
||||
adam = "adam"
|
||||
adamw = "adamw"
|
||||
sgd = "sgd"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OptimizerConfig(BaseModel):
|
||||
optimizer_type: OptimizerType
|
||||
lr: float
|
||||
lr_min: float
|
||||
weight_decay: float
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class TrainingConfig(BaseModel):
|
||||
n_epochs: int
|
||||
batch_size: int
|
||||
shuffle: bool
|
||||
n_iters: int
|
||||
|
||||
enable_activation_checkpointing: bool
|
||||
memory_efficient_fsdp_wrap: bool
|
||||
fsdp_cpu_offload: bool
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class FinetuningAlgorithm(Enum):
|
||||
full = "full"
|
||||
lora = "lora"
|
||||
qlora = "qlora"
|
||||
dora = "dora"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class LoraFinetuningConfig(BaseModel):
|
||||
lora_attn_modules: List[str]
|
||||
apply_lora_to_mlp: bool
|
||||
apply_lora_to_output: bool
|
||||
rank: int
|
||||
alpha: int
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class QLoraFinetuningConfig(LoraFinetuningConfig):
|
||||
pass
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class DoraFinetuningConfig(LoraFinetuningConfig):
|
||||
pass
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class PostTrainingJobLogStream(BaseModel):
|
||||
"""Stream of logs from a finetuning job."""
|
||||
|
||||
job_uuid: str
|
||||
log_lines: List[str]
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class PostTrainingJobStatus(Enum):
|
||||
running = "running"
|
||||
completed = "completed"
|
||||
failed = "failed"
|
||||
scheduled = "scheduled"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class RLHFAlgorithm(Enum):
|
||||
dpo = "dpo"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class DPOAlignmentConfig(BaseModel):
|
||||
reward_scale: float
|
||||
reward_clip: float
|
||||
epsilon: float
|
||||
gamma: float
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class PostTrainingSFTRequest(BaseModel):
|
||||
"""Request to finetune a model."""
|
||||
|
||||
job_uuid: str
|
||||
|
||||
model: str
|
||||
dataset: TrainEvalDataset
|
||||
validation_dataset: TrainEvalDataset
|
||||
|
||||
algorithm: FinetuningAlgorithm
|
||||
algorithm_config: Union[
|
||||
LoraFinetuningConfig, QLoraFinetuningConfig, DoraFinetuningConfig
|
||||
]
|
||||
|
||||
optimizer_config: OptimizerConfig
|
||||
training_config: TrainingConfig
|
||||
|
||||
# TODO: define these
|
||||
hyperparam_search_config: Dict[str, Any]
|
||||
logger_config: Dict[str, Any]
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class PostTrainingRLHFRequest(BaseModel):
|
||||
"""Request to finetune a model."""
|
||||
|
||||
job_uuid: str
|
||||
|
||||
finetuned_model: URL
|
||||
|
||||
dataset: TrainEvalDataset
|
||||
validation_dataset: TrainEvalDataset
|
||||
|
||||
algorithm: RLHFAlgorithm
|
||||
algorithm_config: Union[DPOAlignmentConfig]
|
||||
|
||||
optimizer_config: OptimizerConfig
|
||||
training_config: TrainingConfig
|
||||
|
||||
# TODO: define these
|
||||
hyperparam_search_config: Dict[str, Any]
|
||||
logger_config: Dict[str, Any]
|
||||
|
||||
|
||||
class PostTrainingJob(BaseModel):
|
||||
job_uuid: str
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class PostTrainingJobStatusResponse(BaseModel):
|
||||
"""Status of a finetuning job."""
|
||||
|
||||
job_uuid: str
|
||||
status: PostTrainingJobStatus
|
||||
|
||||
scheduled_at: Optional[datetime] = None
|
||||
started_at: Optional[datetime] = None
|
||||
completed_at: Optional[datetime] = None
|
||||
|
||||
resources_allocated: Optional[Dict[str, Any]] = None
|
||||
|
||||
checkpoints: List[Checkpoint] = Field(default_factory=list)
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class PostTrainingJobArtifactsResponse(BaseModel):
|
||||
"""Artifacts of a finetuning job."""
|
||||
|
||||
job_uuid: str
|
||||
checkpoints: List[Checkpoint] = Field(default_factory=list)
|
||||
|
||||
# TODO(ashwin): metrics, evals
|
||||
|
||||
|
||||
class PostTraining(Protocol):
|
||||
@webmethod(route="/post_training/supervised_fine_tune")
|
||||
def supervised_fine_tune(
|
||||
self,
|
||||
request: PostTrainingSFTRequest,
|
||||
) -> PostTrainingJob: ...
|
||||
|
||||
@webmethod(route="/post_training/preference_optimize")
|
||||
def preference_optimize(
|
||||
self,
|
||||
request: PostTrainingRLHFRequest,
|
||||
) -> PostTrainingJob: ...
|
||||
|
||||
@webmethod(route="/post_training/jobs")
|
||||
def get_training_jobs(self) -> List[PostTrainingJob]: ...
|
||||
|
||||
# sends SSE stream of logs
|
||||
@webmethod(route="/post_training/job/logs")
|
||||
def get_training_job_logstream(self, job_uuid: str) -> PostTrainingJobLogStream: ...
|
||||
|
||||
@webmethod(route="/post_training/job/status")
|
||||
def get_training_job_status(
|
||||
self, job_uuid: str
|
||||
) -> PostTrainingJobStatusResponse: ...
|
||||
|
||||
@webmethod(route="/post_training/job/cancel")
|
||||
def cancel_training_job(self, job_uuid: str) -> None: ...
|
||||
|
||||
@webmethod(route="/post_training/job/artifacts")
|
||||
def get_training_job_artifacts(
|
||||
self, job_uuid: str
|
||||
) -> PostTrainingJobArtifactsResponse: ...
|
||||
Loading…
Add table
Add a link
Reference in a new issue