forked from phoenix-oss/llama-stack-mirror
feat: enable xpu support for meta-reference stack (#558)
This commit adds support for XPU and CPU devices into meta-reference stack for text models. On creation stack automatically identifies which device to use checking available accelerate capabilities in the following order: CUDA, then XPU, finally CPU. This behaviour can be overwritten with the `DEVICE` environment variable. In this case explicitly specified device will be used. Tested with: ``` torchrun pytest llama_stack/providers/tests/inference/test_text_inference.py -k meta_reference ``` Results: * Tested on: system with single CUDA device, system with single XPU device and on pure CPU system * Results: all test pass except `test_completion_logprobs` * `test_completion_logprobs` fails in the same way as on a baseline, i.e. unrelated with this change: `AssertionError: Unexpected top_k=3` Requires: https://github.com/meta-llama/llama-models/pull/233 Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>
This commit is contained in:
parent
15dcc4ea5e
commit
7ea14ae62e
1 changed files with 41 additions and 13 deletions
|
@ -96,9 +96,27 @@ class Llama:
|
|||
This method initializes the distributed process group, sets the device to CUDA,
|
||||
and loads the pre-trained model and tokenizer.
|
||||
"""
|
||||
if "DEVICE" in os.environ:
|
||||
device = os.environ.get("DEVICE")
|
||||
if device == "cuda":
|
||||
assert torch.cuda.is_available(), "PyTorch CUDA backend not available"
|
||||
if device == "xpu":
|
||||
assert torch.xpu.is_available(), "PyTorch XPU backend not available"
|
||||
else:
|
||||
if torch.cuda.is_available():
|
||||
device = "cuda"
|
||||
elif torch.xpu.is_available():
|
||||
device = "xpu"
|
||||
else:
|
||||
device = "cpu"
|
||||
log.info(f"Using {device} device")
|
||||
|
||||
llama_model_id = llama_model.core_model_id.value
|
||||
if not torch.distributed.is_initialized():
|
||||
if device == "cuda":
|
||||
torch.distributed.init_process_group("nccl")
|
||||
else:
|
||||
torch.distributed.init_process_group("gloo")
|
||||
|
||||
model_parallel_size = llama_model.pth_file_count
|
||||
|
||||
|
@ -106,7 +124,10 @@ class Llama:
|
|||
initialize_model_parallel(model_parallel_size)
|
||||
|
||||
local_rank = int(os.environ.get("LOCAL_RANK", 0))
|
||||
if device == "cuda":
|
||||
torch.cuda.set_device(local_rank)
|
||||
elif device == "xpu":
|
||||
torch.xpu.set_device(local_rank)
|
||||
|
||||
# seed must be the same in all processes
|
||||
if config.torch_seed is not None:
|
||||
|
@ -189,10 +210,17 @@ class Llama:
|
|||
"Currently int4 and fp8 are the only supported quantization methods."
|
||||
)
|
||||
else:
|
||||
if device == "cuda":
|
||||
if torch.cuda.is_bf16_supported():
|
||||
torch.set_default_tensor_type(torch.cuda.BFloat16Tensor)
|
||||
else:
|
||||
torch.set_default_tensor_type(torch.cuda.HalfTensor)
|
||||
else:
|
||||
torch.set_default_device(device)
|
||||
if device == "xpu" and torch.xpu.is_bf16_supported():
|
||||
torch.set_default_dtype(torch.bfloat16)
|
||||
else:
|
||||
torch.set_default_dtype(torch.half)
|
||||
if model_args.vision_chunk_size > 0:
|
||||
model = CrossAttentionTransformer(model_args)
|
||||
model.setup_cache(model_args.max_batch_size, torch.bfloat16)
|
||||
|
@ -200,6 +228,8 @@ class Llama:
|
|||
model = Transformer(model_args)
|
||||
model.load_state_dict(state_dict, strict=False)
|
||||
|
||||
model.to(device)
|
||||
|
||||
log.info(f"Loaded in {time.time() - start_time:.2f} seconds")
|
||||
return Llama(model, tokenizer, model_args, llama_model_id)
|
||||
|
||||
|
@ -266,14 +296,14 @@ class Llama:
|
|||
)
|
||||
|
||||
pad_id = self.tokenizer.pad_id
|
||||
tokens = torch.full((bsz, total_len), pad_id, dtype=torch.long, device="cuda")
|
||||
tokens = torch.full((bsz, total_len), pad_id, dtype=torch.long)
|
||||
for k, t in enumerate(prompt_tokens):
|
||||
tokens[k, : len(t)] = torch.tensor(t, dtype=torch.long, device="cuda")
|
||||
tokens[k, : len(t)] = torch.tensor(t, dtype=torch.long)
|
||||
if logprobs:
|
||||
token_logprobs = torch.zeros_like(tokens, dtype=torch.float)
|
||||
token_logprobs = torch.zeros_like(tokens)
|
||||
|
||||
prev_pos = 0
|
||||
eos_reached = torch.tensor([False] * bsz, device="cuda")
|
||||
eos_reached = torch.tensor([False] * bsz)
|
||||
input_text_mask = tokens != pad_id
|
||||
if min_prompt_len == total_len:
|
||||
# TODO(ashwin): unify this branch with the one below and figure out multimodal crap
|
||||
|
@ -285,12 +315,10 @@ class Llama:
|
|||
ignore_index=pad_id,
|
||||
)
|
||||
|
||||
stop_tokens = torch.tensor(self.tokenizer.stop_tokens, device="cuda")
|
||||
stop_tokens = torch.tensor(self.tokenizer.stop_tokens)
|
||||
for cur_pos in range(min_prompt_len, total_len):
|
||||
if is_vision:
|
||||
position_ids = torch.arange(
|
||||
prev_pos, cur_pos, dtype=torch.long, device="cuda"
|
||||
)
|
||||
position_ids = torch.arange(prev_pos, cur_pos, dtype=torch.long)
|
||||
logits = self.model.forward(
|
||||
position_ids,
|
||||
tokens,
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue