forked from phoenix-oss/llama-stack-mirror
completion() for together (#324)
* completion() for together * test fixes * fix client building
This commit is contained in:
parent
8a74e400d6
commit
7ec79f3b9d
2 changed files with 86 additions and 34 deletions
|
@ -20,9 +20,12 @@ from llama_stack.providers.utils.inference.openai_compat import (
|
|||
get_sampling_options,
|
||||
process_chat_completion_response,
|
||||
process_chat_completion_stream_response,
|
||||
process_completion_response,
|
||||
process_completion_stream_response,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
chat_completion_request_to_prompt,
|
||||
completion_request_to_prompt,
|
||||
)
|
||||
|
||||
from .config import TogetherImplConfig
|
||||
|
@ -41,6 +44,7 @@ TOGETHER_SUPPORTED_MODELS = {
|
|||
class TogetherInferenceAdapter(
|
||||
ModelRegistryHelper, Inference, NeedsRequestProviderData
|
||||
):
|
||||
|
||||
def __init__(self, config: TogetherImplConfig) -> None:
|
||||
ModelRegistryHelper.__init__(
|
||||
self, stack_to_provider_models_map=TOGETHER_SUPPORTED_MODELS
|
||||
|
@ -49,7 +53,7 @@ class TogetherInferenceAdapter(
|
|||
self.formatter = ChatFormat(Tokenizer.get_instance())
|
||||
|
||||
async def initialize(self) -> None:
|
||||
return
|
||||
pass
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
@ -63,7 +67,76 @@ class TogetherInferenceAdapter(
|
|||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> AsyncGenerator:
|
||||
raise NotImplementedError()
|
||||
request = CompletionRequest(
|
||||
model=model,
|
||||
content=content,
|
||||
sampling_params=sampling_params,
|
||||
response_format=response_format,
|
||||
stream=stream,
|
||||
logprobs=logprobs,
|
||||
)
|
||||
if stream:
|
||||
return self._stream_completion(request)
|
||||
else:
|
||||
return await self._nonstream_completion(request)
|
||||
|
||||
def _get_client(self) -> Together:
|
||||
together_api_key = None
|
||||
if self.config.api_key is not None:
|
||||
together_api_key = self.config.api_key
|
||||
else:
|
||||
provider_data = self.get_request_provider_data()
|
||||
if provider_data is None or not provider_data.together_api_key:
|
||||
raise ValueError(
|
||||
'Pass Together API Key in the header X-LlamaStack-ProviderData as { "together_api_key": <your api key>}'
|
||||
)
|
||||
together_api_key = provider_data.together_api_key
|
||||
return Together(api_key=together_api_key)
|
||||
|
||||
async def _nonstream_completion(
|
||||
self, request: CompletionRequest
|
||||
) -> ChatCompletionResponse:
|
||||
params = self._get_params_for_completion(request)
|
||||
r = self._get_client().completions.create(**params)
|
||||
return process_completion_response(r, self.formatter)
|
||||
|
||||
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
|
||||
params = self._get_params_for_completion(request)
|
||||
|
||||
# if we shift to TogetherAsyncClient, we won't need this wrapper
|
||||
async def _to_async_generator():
|
||||
s = self._get_client().completions.create(**params)
|
||||
for chunk in s:
|
||||
yield chunk
|
||||
|
||||
stream = _to_async_generator()
|
||||
async for chunk in process_completion_stream_response(stream, self.formatter):
|
||||
yield chunk
|
||||
|
||||
def _build_options(
|
||||
self, sampling_params: Optional[SamplingParams], fmt: ResponseFormat
|
||||
) -> dict:
|
||||
options = get_sampling_options(sampling_params)
|
||||
if fmt:
|
||||
if fmt.type == ResponseFormatType.json_schema.value:
|
||||
options["response_format"] = {
|
||||
"type": "json_object",
|
||||
"schema": fmt.schema,
|
||||
}
|
||||
elif fmt.type == ResponseFormatType.grammar.value:
|
||||
raise NotImplementedError("Grammar response format not supported yet")
|
||||
else:
|
||||
raise ValueError(f"Unknown response format {fmt.type}")
|
||||
|
||||
return options
|
||||
|
||||
def _get_params_for_completion(self, request: CompletionRequest) -> dict:
|
||||
return {
|
||||
"model": self.map_to_provider_model(request.model),
|
||||
"prompt": completion_request_to_prompt(request, self.formatter),
|
||||
"stream": request.stream,
|
||||
**self._build_options(request.sampling_params, request.response_format),
|
||||
}
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
|
@ -77,18 +150,7 @@ class TogetherInferenceAdapter(
|
|||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> AsyncGenerator:
|
||||
together_api_key = None
|
||||
if self.config.api_key is not None:
|
||||
together_api_key = self.config.api_key
|
||||
else:
|
||||
provider_data = self.get_request_provider_data()
|
||||
if provider_data is None or not provider_data.together_api_key:
|
||||
raise ValueError(
|
||||
'Pass Together API Key in the header X-LlamaStack-ProviderData as { "together_api_key": <your api key>}'
|
||||
)
|
||||
together_api_key = provider_data.together_api_key
|
||||
|
||||
client = Together(api_key=together_api_key)
|
||||
request = ChatCompletionRequest(
|
||||
model=model,
|
||||
messages=messages,
|
||||
|
@ -102,25 +164,25 @@ class TogetherInferenceAdapter(
|
|||
)
|
||||
|
||||
if stream:
|
||||
return self._stream_chat_completion(request, client)
|
||||
return self._stream_chat_completion(request)
|
||||
else:
|
||||
return await self._nonstream_chat_completion(request, client)
|
||||
return await self._nonstream_chat_completion(request)
|
||||
|
||||
async def _nonstream_chat_completion(
|
||||
self, request: ChatCompletionRequest, client: Together
|
||||
self, request: ChatCompletionRequest
|
||||
) -> ChatCompletionResponse:
|
||||
params = self._get_params(request)
|
||||
r = client.completions.create(**params)
|
||||
r = self._get_client().completions.create(**params)
|
||||
return process_chat_completion_response(r, self.formatter)
|
||||
|
||||
async def _stream_chat_completion(
|
||||
self, request: ChatCompletionRequest, client: Together
|
||||
self, request: ChatCompletionRequest
|
||||
) -> AsyncGenerator:
|
||||
params = self._get_params(request)
|
||||
|
||||
# if we shift to TogetherAsyncClient, we won't need this wrapper
|
||||
async def _to_async_generator():
|
||||
s = client.completions.create(**params)
|
||||
s = self._get_client().completions.create(**params)
|
||||
for chunk in s:
|
||||
yield chunk
|
||||
|
||||
|
@ -131,23 +193,11 @@ class TogetherInferenceAdapter(
|
|||
yield chunk
|
||||
|
||||
def _get_params(self, request: ChatCompletionRequest) -> dict:
|
||||
options = get_sampling_options(request.sampling_params)
|
||||
if fmt := request.response_format:
|
||||
if fmt.type == ResponseFormatType.json_schema.value:
|
||||
options["response_format"] = {
|
||||
"type": "json_object",
|
||||
"schema": fmt.schema,
|
||||
}
|
||||
elif fmt.type == ResponseFormatType.grammar.value:
|
||||
raise NotImplementedError("Grammar response format not supported yet")
|
||||
else:
|
||||
raise ValueError(f"Unknown response format {fmt.type}")
|
||||
|
||||
return {
|
||||
"model": self.map_to_provider_model(request.model),
|
||||
"prompt": chat_completion_request_to_prompt(request, self.formatter),
|
||||
"stream": request.stream,
|
||||
**options,
|
||||
**self._build_options(request.sampling_params, request.response_format),
|
||||
}
|
||||
|
||||
async def embeddings(
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue