forked from phoenix-oss/llama-stack-mirror
feat(providers): add NVIDIA Inference embedding provider and tests (#935)
# What does this PR do? add /v1/inference/embeddings implementation to NVIDIA provider **open topics** - - *asymmetric models*. NeMo Retriever includes asymmetric models, which are models that embed differently depending on if the input is destined for storage or lookup against storage. the /v1/inference/embeddings api does not allow the user to indicate the type of embedding to perform. see https://github.com/meta-llama/llama-stack/issues/934 - *truncation*. embedding models typically have a limited context window, e.g. 1024 tokens is common though newer models have 8k windows. when the input is larger than this window the endpoint cannot perform its designed function. two options: 0. return an error so the user can reduce the input size and retry; 1. perform truncation for the user and proceed (common strategies are left or right truncation). many users encounter context window size limits and will struggle to write reliable programs. this struggle is especially acute without access to the model's tokenizer. the /v1/inference/embeddings api does not allow the user to delegate truncation policy. see https://github.com/meta-llama/llama-stack/issues/933 - *dimensions*. "Matryoshka" embedding models are available. they allow users to control the number of embedding dimensions the model produces. this is a critical feature for managing storage constraints. embeddings of 1024 dimensions what achieve 95% recall for an application may not be worth the storage cost if a 512 dimensions can achieve 93% recall. controlling embedding dimensions allows applications to determine their recall and storage tradeoffs. the /v1/inference/embeddings api does not allow the user to control the output dimensions. see https://github.com/meta-llama/llama-stack/issues/932 ## Test Plan - `llama stack run llama_stack/templates/nvidia/run.yaml` - `LLAMA_STACK_BASE_URL=http://localhost:8321 pytest -v tests/client-sdk/inference/test_embedding.py --embedding-model baai/bge-m3` ## Sources Please link relevant resources if necessary. ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [x] Ran pre-commit to handle lint / formatting issues. - [x] Read the [contributor guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md), Pull Request section? - [ ] Updated relevant documentation. - [x] Wrote necessary unit or integration tests. --------- Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
This commit is contained in:
parent
2608b6074f
commit
832c535aaf
7 changed files with 172 additions and 4 deletions
|
@ -10,6 +10,11 @@ from typing import AsyncIterator, List, Optional, Union
|
|||
|
||||
from openai import APIConnectionError, AsyncOpenAI
|
||||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
InterleavedContent,
|
||||
InterleavedContentItem,
|
||||
TextContentItem,
|
||||
)
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
|
@ -19,7 +24,6 @@ from llama_stack.apis.inference import (
|
|||
CompletionResponseStreamChunk,
|
||||
EmbeddingsResponse,
|
||||
Inference,
|
||||
InterleavedContent,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
ResponseFormat,
|
||||
|
@ -117,9 +121,38 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
|
|||
async def embeddings(
|
||||
self,
|
||||
model_id: str,
|
||||
contents: List[InterleavedContent],
|
||||
contents: List[str] | List[InterleavedContentItem],
|
||||
) -> EmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
if any(content_has_media(content) for content in contents):
|
||||
raise NotImplementedError("Media is not supported")
|
||||
|
||||
#
|
||||
# Llama Stack: contents = List[str] | List[InterleavedContentItem]
|
||||
# ->
|
||||
# OpenAI: input = str | List[str]
|
||||
#
|
||||
# we can ignore str and always pass List[str] to OpenAI
|
||||
#
|
||||
flat_contents = [
|
||||
item.text if isinstance(item, TextContentItem) else item
|
||||
for content in contents
|
||||
for item in (content if isinstance(content, list) else [content])
|
||||
]
|
||||
input = [content.text if isinstance(content, TextContentItem) else content for content in flat_contents]
|
||||
model = self.get_provider_model_id(model_id)
|
||||
|
||||
response = await self._client.embeddings.create(
|
||||
model=model,
|
||||
input=input,
|
||||
# extra_body={"input_type": "passage"|"query"}, # TODO(mf): how to tell caller's intent?
|
||||
)
|
||||
|
||||
#
|
||||
# OpenAI: CreateEmbeddingResponse(data=[Embedding(embedding=List[float], ...)], ...)
|
||||
# ->
|
||||
# Llama Stack: EmbeddingsResponse(embeddings=List[List[float]])
|
||||
#
|
||||
return EmbeddingsResponse(embeddings=[embedding.embedding for embedding in response.data])
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue