forked from phoenix-oss/llama-stack-mirror
Update the "InterleavedTextMedia" type (#635)
## What does this PR do? This is a long-pending change and particularly important to get done now. Specifically: - we cannot "localize" (aka download) any URLs from media attachments anywhere near our modeling code. it must be done within llama-stack. - `PIL.Image` is infesting all our APIs via `ImageMedia -> InterleavedTextMedia` and that cannot be right at all. Anything in the API surface must be "naturally serializable". We need a standard `{ type: "image", image_url: "<...>" }` which is more extensible - `UserMessage`, `SystemMessage`, etc. are moved completely to llama-stack from the llama-models repository. See https://github.com/meta-llama/llama-models/pull/244 for the corresponding PR in llama-models. ## Test Plan ```bash cd llama_stack/providers/tests pytest -s -v -k "fireworks or ollama or together" inference/test_vision_inference.py pytest -s -v -k "(fireworks or ollama or together) and llama_3b" inference/test_text_inference.py pytest -s -v -k chroma memory/test_memory.py \ --env EMBEDDING_DIMENSION=384 --env CHROMA_DB_PATH=/tmp/foobar pytest -s -v -k fireworks agents/test_agents.py \ --safety-shield=meta-llama/Llama-Guard-3-8B \ --inference-model=meta-llama/Llama-3.1-8B-Instruct ``` Updated the client sdk (see PR ...), installed the SDK in the same environment and then ran the SDK tests: ```bash cd tests/client-sdk LLAMA_STACK_CONFIG=together pytest -s -v agents/test_agents.py LLAMA_STACK_CONFIG=ollama pytest -s -v memory/test_memory.py # this one needed a bit of hacking in the run.yaml to ensure I could register the vision model correctly INFERENCE_MODEL=llama3.2-vision:latest LLAMA_STACK_CONFIG=ollama pytest -s -v inference/test_inference.py ```
This commit is contained in:
parent
10eb31badf
commit
8de8eb03c8
66 changed files with 1344 additions and 1801 deletions
|
@ -29,11 +29,12 @@ from llama_stack.apis.common.deployment_types import * # noqa: F403
|
|||
from llama_stack.apis.inference import * # noqa: F403
|
||||
from llama_stack.apis.safety import * # noqa: F403
|
||||
from llama_stack.apis.memory import * # noqa: F403
|
||||
from llama_stack.apis.common.content_types import InterleavedContent, URL
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class Attachment(BaseModel):
|
||||
content: InterleavedTextMedia | URL
|
||||
content: InterleavedContent | URL
|
||||
mime_type: str
|
||||
|
||||
|
||||
|
@ -102,20 +103,20 @@ class _MemoryBankConfigCommon(BaseModel):
|
|||
|
||||
|
||||
class AgentVectorMemoryBankConfig(_MemoryBankConfigCommon):
|
||||
type: Literal[MemoryBankType.vector.value] = MemoryBankType.vector.value
|
||||
type: Literal["vector"] = "vector"
|
||||
|
||||
|
||||
class AgentKeyValueMemoryBankConfig(_MemoryBankConfigCommon):
|
||||
type: Literal[MemoryBankType.keyvalue.value] = MemoryBankType.keyvalue.value
|
||||
type: Literal["keyvalue"] = "keyvalue"
|
||||
keys: List[str] # what keys to focus on
|
||||
|
||||
|
||||
class AgentKeywordMemoryBankConfig(_MemoryBankConfigCommon):
|
||||
type: Literal[MemoryBankType.keyword.value] = MemoryBankType.keyword.value
|
||||
type: Literal["keyword"] = "keyword"
|
||||
|
||||
|
||||
class AgentGraphMemoryBankConfig(_MemoryBankConfigCommon):
|
||||
type: Literal[MemoryBankType.graph.value] = MemoryBankType.graph.value
|
||||
type: Literal["graph"] = "graph"
|
||||
entities: List[str] # what entities to focus on
|
||||
|
||||
|
||||
|
@ -230,7 +231,7 @@ class MemoryRetrievalStep(StepCommon):
|
|||
StepType.memory_retrieval.value
|
||||
)
|
||||
memory_bank_ids: List[str]
|
||||
inserted_context: InterleavedTextMedia
|
||||
inserted_context: InterleavedContent
|
||||
|
||||
|
||||
Step = Annotated[
|
||||
|
|
|
@ -17,7 +17,7 @@ from llama_stack.apis.inference import * # noqa: F403
|
|||
@json_schema_type
|
||||
class BatchCompletionRequest(BaseModel):
|
||||
model: str
|
||||
content_batch: List[InterleavedTextMedia]
|
||||
content_batch: List[InterleavedContent]
|
||||
sampling_params: Optional[SamplingParams] = SamplingParams()
|
||||
logprobs: Optional[LogProbConfig] = None
|
||||
|
||||
|
@ -53,7 +53,7 @@ class BatchInference(Protocol):
|
|||
async def batch_completion(
|
||||
self,
|
||||
model: str,
|
||||
content_batch: List[InterleavedTextMedia],
|
||||
content_batch: List[InterleavedContent],
|
||||
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> BatchCompletionResponse: ...
|
||||
|
|
60
llama_stack/apis/common/content_types.py
Normal file
60
llama_stack/apis/common/content_types.py
Normal file
|
@ -0,0 +1,60 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Annotated, List, Literal, Optional, Union
|
||||
|
||||
from llama_models.schema_utils import json_schema_type, register_schema
|
||||
|
||||
from pydantic import BaseModel, Field, model_validator
|
||||
|
||||
|
||||
@json_schema_type(
|
||||
schema={"type": "string", "format": "uri", "pattern": "^(https?://|file://|data:)"}
|
||||
)
|
||||
class URL(BaseModel):
|
||||
uri: str
|
||||
|
||||
def __str__(self) -> str:
|
||||
return self.uri
|
||||
|
||||
|
||||
class _URLOrData(BaseModel):
|
||||
url: Optional[URL] = None
|
||||
data: Optional[bytes] = None
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def validator(cls, values):
|
||||
if isinstance(values, dict):
|
||||
return values
|
||||
return {"url": values}
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ImageContentItem(_URLOrData):
|
||||
type: Literal["image"] = "image"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class TextContentItem(BaseModel):
|
||||
type: Literal["text"] = "text"
|
||||
text: str
|
||||
|
||||
|
||||
# other modalities can be added here
|
||||
InterleavedContentItem = register_schema(
|
||||
Annotated[
|
||||
Union[ImageContentItem, TextContentItem],
|
||||
Field(discriminator="type"),
|
||||
],
|
||||
name="InterleavedContentItem",
|
||||
)
|
||||
|
||||
# accept a single "str" as a special case since it is common
|
||||
InterleavedContent = register_schema(
|
||||
Union[str, InterleavedContentItem, List[InterleavedContentItem]],
|
||||
name="InterleavedContent",
|
||||
)
|
|
@ -7,12 +7,12 @@
|
|||
from enum import Enum
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from llama_models.llama3.api.datatypes import URL
|
||||
|
||||
from llama_models.schema_utils import json_schema_type
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llama_stack.apis.common.content_types import URL
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class RestAPIMethod(Enum):
|
||||
|
|
|
@ -6,6 +6,7 @@
|
|||
|
||||
from typing import Literal, Union
|
||||
|
||||
from llama_models.schema_utils import register_schema
|
||||
from pydantic import BaseModel, Field
|
||||
from typing_extensions import Annotated
|
||||
|
||||
|
@ -53,21 +54,24 @@ class AgentTurnInputType(BaseModel):
|
|||
type: Literal["agent_turn_input"] = "agent_turn_input"
|
||||
|
||||
|
||||
ParamType = Annotated[
|
||||
Union[
|
||||
StringType,
|
||||
NumberType,
|
||||
BooleanType,
|
||||
ArrayType,
|
||||
ObjectType,
|
||||
JsonType,
|
||||
UnionType,
|
||||
ChatCompletionInputType,
|
||||
CompletionInputType,
|
||||
AgentTurnInputType,
|
||||
ParamType = register_schema(
|
||||
Annotated[
|
||||
Union[
|
||||
StringType,
|
||||
NumberType,
|
||||
BooleanType,
|
||||
ArrayType,
|
||||
ObjectType,
|
||||
JsonType,
|
||||
UnionType,
|
||||
ChatCompletionInputType,
|
||||
CompletionInputType,
|
||||
AgentTurnInputType,
|
||||
],
|
||||
Field(discriminator="type"),
|
||||
],
|
||||
Field(discriminator="type"),
|
||||
]
|
||||
name="ParamType",
|
||||
)
|
||||
|
||||
# TODO: recursive definition of ParamType in these containers
|
||||
# will cause infinite recursion in OpenAPI generation script
|
||||
|
|
|
@ -6,12 +6,12 @@
|
|||
|
||||
from typing import Any, Dict, List, Literal, Optional, Protocol
|
||||
|
||||
from llama_models.llama3.api.datatypes import URL
|
||||
|
||||
from llama_models.schema_utils import json_schema_type, webmethod
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.apis.common.content_types import URL
|
||||
|
||||
from llama_stack.apis.common.type_system import ParamType
|
||||
from llama_stack.apis.resource import Resource, ResourceType
|
||||
|
||||
|
|
|
@ -15,6 +15,7 @@ from llama_stack.apis.agents import AgentConfig
|
|||
from llama_stack.apis.common.job_types import Job, JobStatus
|
||||
from llama_stack.apis.scoring import * # noqa: F403
|
||||
from llama_stack.apis.eval_tasks import * # noqa: F403
|
||||
from llama_stack.apis.inference import SamplingParams, SystemMessage
|
||||
|
||||
|
||||
@json_schema_type
|
||||
|
|
|
@ -16,14 +16,23 @@ from typing import (
|
|||
Union,
|
||||
)
|
||||
|
||||
from llama_models.llama3.api.datatypes import (
|
||||
BuiltinTool,
|
||||
SamplingParams,
|
||||
StopReason,
|
||||
ToolCall,
|
||||
ToolDefinition,
|
||||
ToolPromptFormat,
|
||||
)
|
||||
|
||||
from llama_models.schema_utils import json_schema_type, webmethod
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic import BaseModel, Field, field_validator
|
||||
from typing_extensions import Annotated
|
||||
|
||||
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
|
||||
from llama_stack.apis.common.content_types import InterleavedContent
|
||||
|
||||
from llama_models.llama3.api.datatypes import * # noqa: F403
|
||||
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
|
||||
from llama_stack.apis.models import * # noqa: F403
|
||||
|
||||
|
||||
|
@ -40,17 +49,17 @@ class QuantizationType(Enum):
|
|||
|
||||
@json_schema_type
|
||||
class Fp8QuantizationConfig(BaseModel):
|
||||
type: Literal[QuantizationType.fp8.value] = QuantizationType.fp8.value
|
||||
type: Literal["fp8"] = "fp8"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class Bf16QuantizationConfig(BaseModel):
|
||||
type: Literal[QuantizationType.bf16.value] = QuantizationType.bf16.value
|
||||
type: Literal["bf16"] = "bf16"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class Int4QuantizationConfig(BaseModel):
|
||||
type: Literal[QuantizationType.int4.value] = QuantizationType.int4.value
|
||||
type: Literal["int4"] = "int4"
|
||||
scheme: Optional[str] = "int4_weight_int8_dynamic_activation"
|
||||
|
||||
|
||||
|
@ -60,6 +69,76 @@ QuantizationConfig = Annotated[
|
|||
]
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class UserMessage(BaseModel):
|
||||
role: Literal["user"] = "user"
|
||||
content: InterleavedContent
|
||||
context: Optional[InterleavedContent] = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class SystemMessage(BaseModel):
|
||||
role: Literal["system"] = "system"
|
||||
content: InterleavedContent
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ToolResponseMessage(BaseModel):
|
||||
role: Literal["ipython"] = "ipython"
|
||||
# it was nice to re-use the ToolResponse type, but having all messages
|
||||
# have a `content` type makes things nicer too
|
||||
call_id: str
|
||||
tool_name: Union[BuiltinTool, str]
|
||||
content: InterleavedContent
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class CompletionMessage(BaseModel):
|
||||
role: Literal["assistant"] = "assistant"
|
||||
content: InterleavedContent
|
||||
stop_reason: StopReason
|
||||
tool_calls: List[ToolCall] = Field(default_factory=list)
|
||||
|
||||
|
||||
Message = Annotated[
|
||||
Union[
|
||||
UserMessage,
|
||||
SystemMessage,
|
||||
ToolResponseMessage,
|
||||
CompletionMessage,
|
||||
],
|
||||
Field(discriminator="role"),
|
||||
]
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ToolResponse(BaseModel):
|
||||
call_id: str
|
||||
tool_name: Union[BuiltinTool, str]
|
||||
content: InterleavedContent
|
||||
|
||||
@field_validator("tool_name", mode="before")
|
||||
@classmethod
|
||||
def validate_field(cls, v):
|
||||
if isinstance(v, str):
|
||||
try:
|
||||
return BuiltinTool(v)
|
||||
except ValueError:
|
||||
return v
|
||||
return v
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ToolChoice(Enum):
|
||||
auto = "auto"
|
||||
required = "required"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class TokenLogProbs(BaseModel):
|
||||
logprobs_by_token: Dict[str, float]
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ChatCompletionResponseEventType(Enum):
|
||||
start = "start"
|
||||
|
@ -117,7 +196,7 @@ ResponseFormat = Annotated[
|
|||
@json_schema_type
|
||||
class CompletionRequest(BaseModel):
|
||||
model: str
|
||||
content: InterleavedTextMedia
|
||||
content: InterleavedContent
|
||||
sampling_params: Optional[SamplingParams] = SamplingParams()
|
||||
response_format: Optional[ResponseFormat] = None
|
||||
|
||||
|
@ -146,7 +225,7 @@ class CompletionResponseStreamChunk(BaseModel):
|
|||
@json_schema_type
|
||||
class BatchCompletionRequest(BaseModel):
|
||||
model: str
|
||||
content_batch: List[InterleavedTextMedia]
|
||||
content_batch: List[InterleavedContent]
|
||||
sampling_params: Optional[SamplingParams] = SamplingParams()
|
||||
response_format: Optional[ResponseFormat] = None
|
||||
logprobs: Optional[LogProbConfig] = None
|
||||
|
@ -230,7 +309,7 @@ class Inference(Protocol):
|
|||
async def completion(
|
||||
self,
|
||||
model_id: str,
|
||||
content: InterleavedTextMedia,
|
||||
content: InterleavedContent,
|
||||
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
|
@ -258,5 +337,5 @@ class Inference(Protocol):
|
|||
async def embeddings(
|
||||
self,
|
||||
model_id: str,
|
||||
contents: List[InterleavedTextMedia],
|
||||
contents: List[InterleavedContent],
|
||||
) -> EmbeddingsResponse: ...
|
||||
|
|
|
@ -8,27 +8,27 @@
|
|||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from typing import List, Optional, Protocol, runtime_checkable
|
||||
from typing import Any, Dict, List, Optional, Protocol, runtime_checkable
|
||||
|
||||
from llama_models.schema_utils import json_schema_type, webmethod
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_models.llama3.api.datatypes import * # noqa: F403
|
||||
from llama_stack.apis.memory_banks import * # noqa: F403
|
||||
from llama_stack.apis.common.content_types import URL
|
||||
from llama_stack.apis.inference import InterleavedContent
|
||||
from llama_stack.apis.memory_banks import MemoryBank
|
||||
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class MemoryBankDocument(BaseModel):
|
||||
document_id: str
|
||||
content: InterleavedTextMedia | URL
|
||||
content: InterleavedContent | URL
|
||||
mime_type: str | None = None
|
||||
metadata: Dict[str, Any] = Field(default_factory=dict)
|
||||
|
||||
|
||||
class Chunk(BaseModel):
|
||||
content: InterleavedTextMedia
|
||||
content: InterleavedContent
|
||||
token_count: int
|
||||
document_id: str
|
||||
|
||||
|
@ -62,6 +62,6 @@ class Memory(Protocol):
|
|||
async def query_documents(
|
||||
self,
|
||||
bank_id: str,
|
||||
query: InterleavedTextMedia,
|
||||
query: InterleavedContent,
|
||||
params: Optional[Dict[str, Any]] = None,
|
||||
) -> QueryDocumentsResponse: ...
|
||||
|
|
|
@ -5,16 +5,16 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
from enum import Enum
|
||||
from typing import Any, Dict, List, Protocol, runtime_checkable
|
||||
from typing import Any, Dict, List, Optional, Protocol, runtime_checkable
|
||||
|
||||
from llama_models.schema_utils import json_schema_type, webmethod
|
||||
from pydantic import BaseModel
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.apis.inference import Message
|
||||
from llama_stack.apis.shields import Shield
|
||||
|
||||
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
|
||||
|
||||
from llama_models.llama3.api.datatypes import * # noqa: F403
|
||||
from llama_stack.apis.shields import * # noqa: F403
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ViolationLevel(Enum):
|
||||
|
|
|
@ -13,6 +13,7 @@ from llama_models.schema_utils import json_schema_type, webmethod
|
|||
from pydantic import BaseModel
|
||||
|
||||
from llama_models.llama3.api.datatypes import * # noqa: F403
|
||||
from llama_stack.apis.inference import Message
|
||||
|
||||
|
||||
class FilteringFunction(Enum):
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue