forked from phoenix-oss/llama-stack-mirror
Update the "InterleavedTextMedia" type (#635)
## What does this PR do?
This is a long-pending change and particularly important to get done
now.
Specifically:
- we cannot "localize" (aka download) any URLs from media attachments
anywhere near our modeling code. it must be done within llama-stack.
- `PIL.Image` is infesting all our APIs via `ImageMedia ->
InterleavedTextMedia` and that cannot be right at all. Anything in the
API surface must be "naturally serializable". We need a standard `{
type: "image", image_url: "<...>" }` which is more extensible
- `UserMessage`, `SystemMessage`, etc. are moved completely to
llama-stack from the llama-models repository.
See https://github.com/meta-llama/llama-models/pull/244 for the
corresponding PR in llama-models.
## Test Plan
```bash
cd llama_stack/providers/tests
pytest -s -v -k "fireworks or ollama or together" inference/test_vision_inference.py
pytest -s -v -k "(fireworks or ollama or together) and llama_3b" inference/test_text_inference.py
pytest -s -v -k chroma memory/test_memory.py \
--env EMBEDDING_DIMENSION=384 --env CHROMA_DB_PATH=/tmp/foobar
pytest -s -v -k fireworks agents/test_agents.py \
--safety-shield=meta-llama/Llama-Guard-3-8B \
--inference-model=meta-llama/Llama-3.1-8B-Instruct
```
Updated the client sdk (see PR ...), installed the SDK in the same
environment and then ran the SDK tests:
```bash
cd tests/client-sdk
LLAMA_STACK_CONFIG=together pytest -s -v agents/test_agents.py
LLAMA_STACK_CONFIG=ollama pytest -s -v memory/test_memory.py
# this one needed a bit of hacking in the run.yaml to ensure I could register the vision model correctly
INFERENCE_MODEL=llama3.2-vision:latest LLAMA_STACK_CONFIG=ollama pytest -s -v inference/test_inference.py
```
This commit is contained in:
parent
10eb31badf
commit
8de8eb03c8
66 changed files with 1344 additions and 1801 deletions
|
|
@ -10,21 +10,24 @@ import uuid
|
|||
|
||||
from botocore.client import BaseClient
|
||||
from llama_models.datatypes import CoreModelId
|
||||
|
||||
from llama_models.llama3.api.chat_format import ChatFormat
|
||||
|
||||
from llama_models.llama3.api.datatypes import ToolParamDefinition
|
||||
from llama_models.llama3.api.tokenizer import Tokenizer
|
||||
|
||||
from llama_stack.providers.utils.inference.model_registry import (
|
||||
build_model_alias,
|
||||
ModelRegistryHelper,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
content_has_media,
|
||||
interleaved_content_as_str,
|
||||
)
|
||||
|
||||
from llama_stack.apis.inference import * # noqa: F403
|
||||
|
||||
|
||||
from llama_stack.providers.remote.inference.bedrock.config import BedrockConfig
|
||||
from llama_stack.providers.utils.bedrock.client import create_bedrock_client
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import content_has_media
|
||||
|
||||
|
||||
MODEL_ALIASES = [
|
||||
|
|
@ -65,7 +68,7 @@ class BedrockInferenceAdapter(ModelRegistryHelper, Inference):
|
|||
async def completion(
|
||||
self,
|
||||
model_id: str,
|
||||
content: InterleavedTextMedia,
|
||||
content: InterleavedContent,
|
||||
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
|
|
@ -450,7 +453,7 @@ class BedrockInferenceAdapter(ModelRegistryHelper, Inference):
|
|||
async def embeddings(
|
||||
self,
|
||||
model_id: str,
|
||||
contents: List[InterleavedTextMedia],
|
||||
contents: List[InterleavedContent],
|
||||
) -> EmbeddingsResponse:
|
||||
model = await self.model_store.get_model(model_id)
|
||||
embeddings = []
|
||||
|
|
@ -458,7 +461,7 @@ class BedrockInferenceAdapter(ModelRegistryHelper, Inference):
|
|||
assert not content_has_media(
|
||||
content
|
||||
), "Bedrock does not support media for embeddings"
|
||||
input_text = interleaved_text_media_as_str(content)
|
||||
input_text = interleaved_content_as_str(content)
|
||||
input_body = {"inputText": input_text}
|
||||
body = json.dumps(input_body)
|
||||
response = self.client.invoke_model(
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue