forked from phoenix-oss/llama-stack-mirror
API Updates (#73)
* API Keys passed from Client instead of distro configuration * delete distribution registry * Rename the "package" word away * Introduce a "Router" layer for providers Some providers need to be factorized and considered as thin routing layers on top of other providers. Consider two examples: - The inference API should be a routing layer over inference providers, routed using the "model" key - The memory banks API is another instance where various memory bank types will be provided by independent providers (e.g., a vector store is served by Chroma while a keyvalue memory can be served by Redis or PGVector) This commit introduces a generalized routing layer for this purpose. * update `apis_to_serve` * llama_toolchain -> llama_stack * Codemod from llama_toolchain -> llama_stack - added providers/registry - cleaned up api/ subdirectories and moved impls away - restructured api/api.py - from llama_stack.apis.<api> import foo should work now - update imports to do llama_stack.apis.<api> - update many other imports - added __init__, fixed some registry imports - updated registry imports - create_agentic_system -> create_agent - AgenticSystem -> Agent * Moved some stuff out of common/; re-generated OpenAPI spec * llama-toolchain -> llama-stack (hyphens) * add control plane API * add redis adapter + sqlite provider * move core -> distribution * Some more toolchain -> stack changes * small naming shenanigans * Removing custom tool and agent utilities and moving them client side * Move control plane to distribution server for now * Remove control plane from API list * no codeshield dependency randomly plzzzzz * Add "fire" as a dependency * add back event loggers * stack configure fixes * use brave instead of bing in the example client * add init file so it gets packaged * add init files so it gets packaged * Update MANIFEST * bug fix --------- Co-authored-by: Hardik Shah <hjshah@fb.com> Co-authored-by: Xi Yan <xiyan@meta.com> Co-authored-by: Ashwin Bharambe <ashwin@meta.com>
This commit is contained in:
parent
f294eac5f5
commit
9487ad8294
213 changed files with 1725 additions and 1204 deletions
7
llama_stack/apis/inference/__init__.py
Normal file
7
llama_stack/apis/inference/__init__.py
Normal file
|
@ -0,0 +1,7 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from .inference import * # noqa: F401 F403
|
107
llama_stack/apis/inference/client.py
Normal file
107
llama_stack/apis/inference/client.py
Normal file
|
@ -0,0 +1,107 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import asyncio
|
||||
import json
|
||||
from typing import Any, AsyncGenerator
|
||||
|
||||
import fire
|
||||
import httpx
|
||||
|
||||
from llama_stack.distribution.datatypes import RemoteProviderConfig
|
||||
from pydantic import BaseModel
|
||||
from termcolor import cprint
|
||||
|
||||
from .event_logger import EventLogger
|
||||
|
||||
from .inference import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
ChatCompletionResponseStreamChunk,
|
||||
CompletionRequest,
|
||||
Inference,
|
||||
UserMessage,
|
||||
)
|
||||
|
||||
|
||||
async def get_client_impl(config: RemoteProviderConfig, _deps: Any) -> Inference:
|
||||
return InferenceClient(config.url)
|
||||
|
||||
|
||||
def encodable_dict(d: BaseModel):
|
||||
return json.loads(d.json())
|
||||
|
||||
|
||||
class InferenceClient(Inference):
|
||||
def __init__(self, base_url: str):
|
||||
self.base_url = base_url
|
||||
|
||||
async def initialize(self) -> None:
|
||||
pass
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
async def completion(self, request: CompletionRequest) -> AsyncGenerator:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator:
|
||||
async with httpx.AsyncClient() as client:
|
||||
async with client.stream(
|
||||
"POST",
|
||||
f"{self.base_url}/inference/chat_completion",
|
||||
json=encodable_dict(request),
|
||||
headers={"Content-Type": "application/json"},
|
||||
timeout=20,
|
||||
) as response:
|
||||
if response.status_code != 200:
|
||||
content = await response.aread()
|
||||
cprint(
|
||||
f"Error: HTTP {response.status_code} {content.decode()}", "red"
|
||||
)
|
||||
return
|
||||
|
||||
async for line in response.aiter_lines():
|
||||
if line.startswith("data:"):
|
||||
data = line[len("data: ") :]
|
||||
try:
|
||||
if request.stream:
|
||||
if "error" in data:
|
||||
cprint(data, "red")
|
||||
continue
|
||||
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
**json.loads(data)
|
||||
)
|
||||
else:
|
||||
yield ChatCompletionResponse(**json.loads(data))
|
||||
except Exception as e:
|
||||
print(data)
|
||||
print(f"Error with parsing or validation: {e}")
|
||||
|
||||
|
||||
async def run_main(host: str, port: int, stream: bool):
|
||||
client = InferenceClient(f"http://{host}:{port}")
|
||||
|
||||
message = UserMessage(content="hello world, troll me in two-paragraphs about 42")
|
||||
cprint(f"User>{message.content}", "green")
|
||||
iterator = client.chat_completion(
|
||||
ChatCompletionRequest(
|
||||
model="Meta-Llama3.1-8B-Instruct",
|
||||
messages=[message],
|
||||
stream=stream,
|
||||
)
|
||||
)
|
||||
async for log in EventLogger().log(iterator):
|
||||
log.print()
|
||||
|
||||
|
||||
def main(host: str, port: int, stream: bool = True):
|
||||
asyncio.run(run_main(host, port, stream))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
fire.Fire(main)
|
42
llama_stack/apis/inference/event_logger.py
Normal file
42
llama_stack/apis/inference/event_logger.py
Normal file
|
@ -0,0 +1,42 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionResponseEventType,
|
||||
ChatCompletionResponseStreamChunk,
|
||||
)
|
||||
from termcolor import cprint
|
||||
|
||||
|
||||
class LogEvent:
|
||||
def __init__(
|
||||
self,
|
||||
content: str = "",
|
||||
end: str = "\n",
|
||||
color="white",
|
||||
):
|
||||
self.content = content
|
||||
self.color = color
|
||||
self.end = "\n" if end is None else end
|
||||
|
||||
def print(self, flush=True):
|
||||
cprint(f"{self.content}", color=self.color, end=self.end, flush=flush)
|
||||
|
||||
|
||||
class EventLogger:
|
||||
async def log(self, event_generator):
|
||||
async for chunk in event_generator:
|
||||
if isinstance(chunk, ChatCompletionResponseStreamChunk):
|
||||
event = chunk.event
|
||||
if event.event_type == ChatCompletionResponseEventType.start:
|
||||
yield LogEvent("Assistant> ", color="cyan", end="")
|
||||
elif event.event_type == ChatCompletionResponseEventType.progress:
|
||||
yield LogEvent(event.delta, color="yellow", end="")
|
||||
elif event.event_type == ChatCompletionResponseEventType.complete:
|
||||
yield LogEvent("")
|
||||
else:
|
||||
yield LogEvent("Assistant> ", color="cyan", end="")
|
||||
yield LogEvent(chunk.completion_message.content, color="yellow")
|
205
llama_stack/apis/inference/inference.py
Normal file
205
llama_stack/apis/inference/inference.py
Normal file
|
@ -0,0 +1,205 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from enum import Enum
|
||||
|
||||
from typing import List, Literal, Optional, Protocol, Union
|
||||
|
||||
from llama_models.schema_utils import json_schema_type, webmethod
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from typing_extensions import Annotated
|
||||
|
||||
from llama_models.llama3.api.datatypes import * # noqa: F403
|
||||
|
||||
|
||||
class LogProbConfig(BaseModel):
|
||||
top_k: Optional[int] = 0
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class QuantizationType(Enum):
|
||||
bf16 = "bf16"
|
||||
fp8 = "fp8"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class Fp8QuantizationConfig(BaseModel):
|
||||
type: Literal[QuantizationType.fp8.value] = QuantizationType.fp8.value
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class Bf16QuantizationConfig(BaseModel):
|
||||
type: Literal[QuantizationType.bf16.value] = QuantizationType.bf16.value
|
||||
|
||||
|
||||
QuantizationConfig = Annotated[
|
||||
Union[Bf16QuantizationConfig, Fp8QuantizationConfig],
|
||||
Field(discriminator="type"),
|
||||
]
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ChatCompletionResponseEventType(Enum):
|
||||
start = "start"
|
||||
complete = "complete"
|
||||
progress = "progress"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ToolCallParseStatus(Enum):
|
||||
started = "started"
|
||||
in_progress = "in_progress"
|
||||
failure = "failure"
|
||||
success = "success"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ToolCallDelta(BaseModel):
|
||||
content: Union[str, ToolCall]
|
||||
parse_status: ToolCallParseStatus
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ChatCompletionResponseEvent(BaseModel):
|
||||
"""Chat completion response event."""
|
||||
|
||||
event_type: ChatCompletionResponseEventType
|
||||
delta: Union[str, ToolCallDelta]
|
||||
logprobs: Optional[List[TokenLogProbs]] = None
|
||||
stop_reason: Optional[StopReason] = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class CompletionRequest(BaseModel):
|
||||
model: str
|
||||
content: InterleavedTextMedia
|
||||
sampling_params: Optional[SamplingParams] = SamplingParams()
|
||||
|
||||
stream: Optional[bool] = False
|
||||
logprobs: Optional[LogProbConfig] = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class CompletionResponse(BaseModel):
|
||||
"""Completion response."""
|
||||
|
||||
completion_message: CompletionMessage
|
||||
logprobs: Optional[List[TokenLogProbs]] = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class CompletionResponseStreamChunk(BaseModel):
|
||||
"""streamed completion response."""
|
||||
|
||||
delta: str
|
||||
stop_reason: Optional[StopReason] = None
|
||||
logprobs: Optional[List[TokenLogProbs]] = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class BatchCompletionRequest(BaseModel):
|
||||
model: str
|
||||
content_batch: List[InterleavedTextMedia]
|
||||
sampling_params: Optional[SamplingParams] = SamplingParams()
|
||||
logprobs: Optional[LogProbConfig] = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class BatchCompletionResponse(BaseModel):
|
||||
"""Batch completion response."""
|
||||
|
||||
completion_message_batch: List[CompletionMessage]
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ChatCompletionRequest(BaseModel):
|
||||
model: str
|
||||
messages: List[Message]
|
||||
sampling_params: Optional[SamplingParams] = SamplingParams()
|
||||
|
||||
# zero-shot tool definitions as input to the model
|
||||
tools: Optional[List[ToolDefinition]] = Field(default_factory=list)
|
||||
tool_choice: Optional[ToolChoice] = Field(default=ToolChoice.auto)
|
||||
tool_prompt_format: Optional[ToolPromptFormat] = Field(
|
||||
default=ToolPromptFormat.json
|
||||
)
|
||||
|
||||
stream: Optional[bool] = False
|
||||
logprobs: Optional[LogProbConfig] = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ChatCompletionResponseStreamChunk(BaseModel):
|
||||
"""SSE-stream of these events."""
|
||||
|
||||
event: ChatCompletionResponseEvent
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ChatCompletionResponse(BaseModel):
|
||||
"""Chat completion response."""
|
||||
|
||||
completion_message: CompletionMessage
|
||||
logprobs: Optional[List[TokenLogProbs]] = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class BatchChatCompletionRequest(BaseModel):
|
||||
model: str
|
||||
messages_batch: List[List[Message]]
|
||||
sampling_params: Optional[SamplingParams] = SamplingParams()
|
||||
|
||||
# zero-shot tool definitions as input to the model
|
||||
tools: Optional[List[ToolDefinition]] = Field(default_factory=list)
|
||||
tool_choice: Optional[ToolChoice] = Field(default=ToolChoice.auto)
|
||||
tool_prompt_format: Optional[ToolPromptFormat] = Field(
|
||||
default=ToolPromptFormat.json
|
||||
)
|
||||
logprobs: Optional[LogProbConfig] = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class BatchChatCompletionResponse(BaseModel):
|
||||
completion_message_batch: List[CompletionMessage]
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class EmbeddingsResponse(BaseModel):
|
||||
embeddings: List[List[float]]
|
||||
|
||||
|
||||
class Inference(Protocol):
|
||||
@webmethod(route="/inference/completion")
|
||||
async def completion(
|
||||
self,
|
||||
model: str,
|
||||
content: InterleavedTextMedia,
|
||||
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> Union[CompletionResponse, CompletionResponseStreamChunk]: ...
|
||||
|
||||
@webmethod(route="/inference/chat_completion")
|
||||
async def chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: List[Message],
|
||||
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
||||
# zero-shot tool definitions as input to the model
|
||||
tools: Optional[List[ToolDefinition]] = list,
|
||||
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
||||
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> Union[ChatCompletionResponse, ChatCompletionResponseStreamChunk]: ...
|
||||
|
||||
@webmethod(route="/inference/embeddings")
|
||||
async def embeddings(
|
||||
self,
|
||||
model: str,
|
||||
contents: List[InterleavedTextMedia],
|
||||
) -> EmbeddingsResponse: ...
|
Loading…
Add table
Add a link
Reference in a new issue