Docs improvement v3 (#433)

# What does this PR do?

- updated the notebooks to reflect past changes up to llama-stack 0.0.53
- updated readme to  provide accurate and up-to-date info
- improve the current zero to hero by integrating an example using
together api


## Before submitting

- [x] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Ran pre-commit to handle lint / formatting issues.
- [x] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.

---------

Co-authored-by: Sanyam Bhutani <sanyambhutani@meta.com>
This commit is contained in:
Justin Lee 2024-11-22 15:43:31 -08:00 committed by GitHub
parent 97dc5b68e5
commit 9928405e2c
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
17 changed files with 1410 additions and 2295 deletions

View file

@ -0,0 +1,259 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "a0ed972d",
"metadata": {},
"source": [
"# Switching between Local and Cloud Model with Llama Stack\n",
"\n",
"This guide provides a streamlined setup to switch between local and cloud clients for text generation with Llama Stacks `chat_completion` API. This setup enables automatic fallback to a cloud instance if the local client is unavailable.\n",
"\n",
"### Prerequisites\n",
"Before you begin, please ensure Llama Stack is installed and the distribution is set up by following the [Getting Started Guide](https://llama-stack.readthedocs.io/en/latest/). You will need to run two distributions, a local and a cloud distribution, for this demo to work.\n",
"\n",
"### Implementation"
]
},
{
"cell_type": "markdown",
"id": "bfac8382",
"metadata": {},
"source": [
"### 1. Configuration\n",
"Set up your connection parameters:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "d80c0926",
"metadata": {},
"outputs": [],
"source": [
"HOST = \"localhost\" # Replace with your host\n",
"LOCAL_PORT = 5000 # Replace with your local distro port\n",
"CLOUD_PORT = 5001 # Replace with your cloud distro port"
]
},
{
"cell_type": "markdown",
"id": "df89cff7",
"metadata": {},
"source": [
"#### 2. Set Up Local and Cloud Clients\n",
"\n",
"Initialize both clients, specifying the `base_url` for each instance. In this case, we have the local distribution running on `http://localhost:5000` and the cloud distribution running on `http://localhost:5001`.\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "7f868dfe",
"metadata": {},
"outputs": [],
"source": [
"from llama_stack_client import LlamaStackClient\n",
"\n",
"# Configure local and cloud clients\n",
"local_client = LlamaStackClient(base_url=f'http://{HOST}:{LOCAL_PORT}')\n",
"cloud_client = LlamaStackClient(base_url=f'http://{HOST}:{CLOUD_PORT}')"
]
},
{
"cell_type": "markdown",
"id": "894689c1",
"metadata": {},
"source": [
"#### 3. Client Selection with Fallback\n",
"\n",
"The `select_client` function checks if the local client is available using a lightweight `/health` check. If the local client is unavailable, it automatically switches to the cloud client.\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "ff0c8277",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[33mUsing local client.\u001b[0m\n"
]
}
],
"source": [
"import httpx\n",
"from termcolor import cprint\n",
"\n",
"async def check_client_health(client, client_name: str) -> bool:\n",
" try:\n",
" async with httpx.AsyncClient() as http_client:\n",
" response = await http_client.get(f'{client.base_url}/health')\n",
" if response.status_code == 200:\n",
" cprint(f'Using {client_name} client.', 'yellow')\n",
" return True\n",
" else:\n",
" cprint(f'{client_name} client health check failed.', 'red')\n",
" return False\n",
" except httpx.RequestError:\n",
" cprint(f'Failed to connect to {client_name} client.', 'red')\n",
" return False\n",
"\n",
"async def select_client(use_local: bool) -> LlamaStackClient:\n",
" if use_local and await check_client_health(local_client, 'local'):\n",
" return local_client\n",
"\n",
" if await check_client_health(cloud_client, 'cloud'):\n",
" return cloud_client\n",
"\n",
" raise ConnectionError('Unable to connect to any client.')\n",
"\n",
"# Example usage: pass True for local, False for cloud\n",
"client = await select_client(use_local=True)\n"
]
},
{
"cell_type": "markdown",
"id": "9ccfe66f",
"metadata": {},
"source": [
"#### 4. Generate a Response\n",
"\n",
"After selecting the client, you can generate text using `chat_completion`. This example sends a sample prompt to the model and prints the response.\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "5e19cc20",
"metadata": {},
"outputs": [],
"source": [
"from termcolor import cprint\n",
"from llama_stack_client.lib.inference.event_logger import EventLogger\n",
"\n",
"async def get_llama_response(stream: bool = True, use_local: bool = True):\n",
" client = await select_client(use_local) # Selects the available client\n",
" message = {\n",
" \"role\": \"user\",\n",
" \"content\": 'hello world, write me a 2 sentence poem about the moon'\n",
" }\n",
" cprint(f'User> {message[\"content\"]}', 'green')\n",
"\n",
" response = client.inference.chat_completion(\n",
" messages=[message],\n",
" model='Llama3.2-11B-Vision-Instruct',\n",
" stream=stream,\n",
" )\n",
"\n",
" if not stream:\n",
" cprint(f'> Response: {response.completion_message.content}', 'cyan')\n",
" else:\n",
" async for log in EventLogger().log(response):\n",
" log.print()\n"
]
},
{
"cell_type": "markdown",
"id": "6edf5e57",
"metadata": {},
"source": [
"#### 5. Run with Cloud Model\n",
"\n",
"Use `asyncio.run()` to execute `get_llama_response` in an asynchronous event loop.\n"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "c10f487e",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[33mUsing cloud client.\u001b[0m\n",
"\u001b[32mUser> hello world, write me a 2 sentence poem about the moon\u001b[0m\n",
"\u001b[36mAssistant> \u001b[0m\u001b[33mSilver\u001b[0m\u001b[33m cres\u001b[0m\u001b[33mcent\u001b[0m\u001b[33m in\u001b[0m\u001b[33m the\u001b[0m\u001b[33m midnight\u001b[0m\u001b[33m sky\u001b[0m\u001b[33m,\n",
"\u001b[0m\u001b[33mA\u001b[0m\u001b[33m gentle\u001b[0m\u001b[33m glow\u001b[0m\u001b[33m that\u001b[0m\u001b[33m whispers\u001b[0m\u001b[33m,\u001b[0m\u001b[33m \"\u001b[0m\u001b[33mI\u001b[0m\u001b[33m'm\u001b[0m\u001b[33m passing\u001b[0m\u001b[33m by\u001b[0m\u001b[33m.\"\u001b[0m\u001b[97m\u001b[0m\n"
]
}
],
"source": [
"import asyncio\n",
"\n",
"\n",
"# Run this function directly in a Jupyter Notebook cell with `await`\n",
"await get_llama_response(use_local=False)\n",
"# To run it in a python file, use this line instead\n",
"# asyncio.run(get_llama_response(use_local=False))"
]
},
{
"cell_type": "markdown",
"id": "5c433511-9321-4718-ab7f-e21cf6b5ca79",
"metadata": {},
"source": [
"#### 6. Run with Local Model\n"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "02eacfaf-c7f1-494b-ac28-129d2a0258e3",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[33mUsing local client.\u001b[0m\n",
"\u001b[32mUser> hello world, write me a 2 sentence poem about the moon\u001b[0m\n",
"\u001b[36mAssistant> \u001b[0m\u001b[33mSilver\u001b[0m\u001b[33m cres\u001b[0m\u001b[33mcent\u001b[0m\u001b[33m in\u001b[0m\u001b[33m the\u001b[0m\u001b[33m midnight\u001b[0m\u001b[33m sky\u001b[0m\u001b[33m,\n",
"\u001b[0m\u001b[33mA\u001b[0m\u001b[33m gentle\u001b[0m\u001b[33m glow\u001b[0m\u001b[33m that\u001b[0m\u001b[33m whispers\u001b[0m\u001b[33m,\u001b[0m\u001b[33m \"\u001b[0m\u001b[33mI\u001b[0m\u001b[33m'm\u001b[0m\u001b[33m passing\u001b[0m\u001b[33m by\u001b[0m\u001b[33m.\"\u001b[0m\u001b[97m\u001b[0m\n"
]
}
],
"source": [
"import asyncio\n",
"\n",
"await get_llama_response(use_local=True)"
]
},
{
"cell_type": "markdown",
"id": "7e3a3ffa",
"metadata": {},
"source": [
"Thanks for checking out this notebook! \n",
"\n",
"The next one will be a guide on [Prompt Engineering](./01_Prompt_Engineering101.ipynb), please continue learning!"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.15"
}
},
"nbformat": 4,
"nbformat_minor": 5
}