forked from phoenix-oss/llama-stack-mirror
impls
-> inline
, adapters
-> remote
(#381)
This commit is contained in:
parent
b10e9f46bb
commit
994732e2e0
169 changed files with 106 additions and 105 deletions
|
@ -1,159 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import json
|
||||
from typing import List
|
||||
from urllib.parse import urlparse
|
||||
|
||||
import chromadb
|
||||
from numpy.typing import NDArray
|
||||
|
||||
from pydantic import parse_obj_as
|
||||
|
||||
from llama_stack.apis.memory import * # noqa: F403
|
||||
|
||||
from llama_stack.providers.datatypes import MemoryBanksProtocolPrivate
|
||||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
BankWithIndex,
|
||||
EmbeddingIndex,
|
||||
)
|
||||
|
||||
|
||||
class ChromaIndex(EmbeddingIndex):
|
||||
def __init__(self, client: chromadb.AsyncHttpClient, collection):
|
||||
self.client = client
|
||||
self.collection = collection
|
||||
|
||||
async def add_chunks(self, chunks: List[Chunk], embeddings: NDArray):
|
||||
assert len(chunks) == len(
|
||||
embeddings
|
||||
), f"Chunk length {len(chunks)} does not match embedding length {len(embeddings)}"
|
||||
|
||||
await self.collection.add(
|
||||
documents=[chunk.json() for chunk in chunks],
|
||||
embeddings=embeddings,
|
||||
ids=[f"{c.document_id}:chunk-{i}" for i, c in enumerate(chunks)],
|
||||
)
|
||||
|
||||
async def query(
|
||||
self, embedding: NDArray, k: int, score_threshold: float
|
||||
) -> QueryDocumentsResponse:
|
||||
results = await self.collection.query(
|
||||
query_embeddings=[embedding.tolist()],
|
||||
n_results=k,
|
||||
include=["documents", "distances"],
|
||||
)
|
||||
distances = results["distances"][0]
|
||||
documents = results["documents"][0]
|
||||
|
||||
chunks = []
|
||||
scores = []
|
||||
for dist, doc in zip(distances, documents):
|
||||
try:
|
||||
doc = json.loads(doc)
|
||||
chunk = Chunk(**doc)
|
||||
except Exception:
|
||||
import traceback
|
||||
|
||||
traceback.print_exc()
|
||||
print(f"Failed to parse document: {doc}")
|
||||
continue
|
||||
|
||||
chunks.append(chunk)
|
||||
scores.append(1.0 / float(dist))
|
||||
|
||||
return QueryDocumentsResponse(chunks=chunks, scores=scores)
|
||||
|
||||
|
||||
class ChromaMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
|
||||
def __init__(self, url: str) -> None:
|
||||
print(f"Initializing ChromaMemoryAdapter with url: {url}")
|
||||
url = url.rstrip("/")
|
||||
parsed = urlparse(url)
|
||||
|
||||
if parsed.path and parsed.path != "/":
|
||||
raise ValueError("URL should not contain a path")
|
||||
|
||||
self.host = parsed.hostname
|
||||
self.port = parsed.port
|
||||
|
||||
self.client = None
|
||||
self.cache = {}
|
||||
|
||||
async def initialize(self) -> None:
|
||||
try:
|
||||
print(f"Connecting to Chroma server at: {self.host}:{self.port}")
|
||||
self.client = await chromadb.AsyncHttpClient(host=self.host, port=self.port)
|
||||
except Exception as e:
|
||||
import traceback
|
||||
|
||||
traceback.print_exc()
|
||||
raise RuntimeError("Could not connect to Chroma server") from e
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
async def register_memory_bank(
|
||||
self,
|
||||
memory_bank: MemoryBankDef,
|
||||
) -> None:
|
||||
assert (
|
||||
memory_bank.type == MemoryBankType.vector.value
|
||||
), f"Only vector banks are supported {memory_bank.type}"
|
||||
|
||||
collection = await self.client.get_or_create_collection(
|
||||
name=memory_bank.identifier,
|
||||
metadata={"bank": memory_bank.json()},
|
||||
)
|
||||
bank_index = BankWithIndex(
|
||||
bank=memory_bank, index=ChromaIndex(self.client, collection)
|
||||
)
|
||||
self.cache[memory_bank.identifier] = bank_index
|
||||
|
||||
async def list_memory_banks(self) -> List[MemoryBankDef]:
|
||||
collections = await self.client.list_collections()
|
||||
for collection in collections:
|
||||
try:
|
||||
data = json.loads(collection.metadata["bank"])
|
||||
bank = parse_obj_as(MemoryBankDef, data)
|
||||
except Exception:
|
||||
import traceback
|
||||
|
||||
traceback.print_exc()
|
||||
print(f"Failed to parse bank: {collection.metadata}")
|
||||
continue
|
||||
|
||||
index = BankWithIndex(
|
||||
bank=bank,
|
||||
index=ChromaIndex(self.client, collection),
|
||||
)
|
||||
self.cache[bank.identifier] = index
|
||||
|
||||
return [i.bank for i in self.cache.values()]
|
||||
|
||||
async def insert_documents(
|
||||
self,
|
||||
bank_id: str,
|
||||
documents: List[MemoryBankDocument],
|
||||
ttl_seconds: Optional[int] = None,
|
||||
) -> None:
|
||||
index = self.cache.get(bank_id, None)
|
||||
if not index:
|
||||
raise ValueError(f"Bank {bank_id} not found")
|
||||
|
||||
await index.insert_documents(documents)
|
||||
|
||||
async def query_documents(
|
||||
self,
|
||||
bank_id: str,
|
||||
query: InterleavedTextMedia,
|
||||
params: Optional[Dict[str, Any]] = None,
|
||||
) -> QueryDocumentsResponse:
|
||||
index = self.cache.get(bank_id, None)
|
||||
if not index:
|
||||
raise ValueError(f"Bank {bank_id} not found")
|
||||
|
||||
return await index.query_documents(query, params)
|
Loading…
Add table
Add a link
Reference in a new issue