forked from phoenix-oss/llama-stack-mirror
impls
-> inline
, adapters
-> remote
(#381)
This commit is contained in:
parent
b10e9f46bb
commit
994732e2e0
169 changed files with 106 additions and 105 deletions
141
llama_stack/providers/inline/meta_reference/memory/faiss.py
Normal file
141
llama_stack/providers/inline/meta_reference/memory/faiss.py
Normal file
|
@ -0,0 +1,141 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import logging
|
||||
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
import faiss
|
||||
import numpy as np
|
||||
from numpy.typing import NDArray
|
||||
|
||||
from llama_models.llama3.api.datatypes import * # noqa: F403
|
||||
|
||||
from llama_stack.apis.memory import * # noqa: F403
|
||||
from llama_stack.providers.datatypes import MemoryBanksProtocolPrivate
|
||||
from llama_stack.providers.utils.kvstore import kvstore_impl
|
||||
|
||||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
ALL_MINILM_L6_V2_DIMENSION,
|
||||
BankWithIndex,
|
||||
EmbeddingIndex,
|
||||
)
|
||||
from llama_stack.providers.utils.telemetry import tracing
|
||||
|
||||
from .config import FaissImplConfig
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
MEMORY_BANKS_PREFIX = "memory_banks:"
|
||||
|
||||
|
||||
class FaissIndex(EmbeddingIndex):
|
||||
id_by_index: Dict[int, str]
|
||||
chunk_by_index: Dict[int, str]
|
||||
|
||||
def __init__(self, dimension: int):
|
||||
self.index = faiss.IndexFlatL2(dimension)
|
||||
self.id_by_index = {}
|
||||
self.chunk_by_index = {}
|
||||
|
||||
@tracing.span(name="add_chunks")
|
||||
async def add_chunks(self, chunks: List[Chunk], embeddings: NDArray):
|
||||
indexlen = len(self.id_by_index)
|
||||
for i, chunk in enumerate(chunks):
|
||||
self.chunk_by_index[indexlen + i] = chunk
|
||||
self.id_by_index[indexlen + i] = chunk.document_id
|
||||
|
||||
self.index.add(np.array(embeddings).astype(np.float32))
|
||||
|
||||
async def query(
|
||||
self, embedding: NDArray, k: int, score_threshold: float
|
||||
) -> QueryDocumentsResponse:
|
||||
distances, indices = self.index.search(
|
||||
embedding.reshape(1, -1).astype(np.float32), k
|
||||
)
|
||||
|
||||
chunks = []
|
||||
scores = []
|
||||
for d, i in zip(distances[0], indices[0]):
|
||||
if i < 0:
|
||||
continue
|
||||
chunks.append(self.chunk_by_index[int(i)])
|
||||
scores.append(1.0 / float(d))
|
||||
|
||||
return QueryDocumentsResponse(chunks=chunks, scores=scores)
|
||||
|
||||
|
||||
class FaissMemoryImpl(Memory, MemoryBanksProtocolPrivate):
|
||||
def __init__(self, config: FaissImplConfig) -> None:
|
||||
self.config = config
|
||||
self.cache = {}
|
||||
self.kvstore = None
|
||||
|
||||
async def initialize(self) -> None:
|
||||
self.kvstore = await kvstore_impl(self.config.kvstore)
|
||||
# Load existing banks from kvstore
|
||||
start_key = MEMORY_BANKS_PREFIX
|
||||
end_key = f"{MEMORY_BANKS_PREFIX}\xff"
|
||||
stored_banks = await self.kvstore.range(start_key, end_key)
|
||||
|
||||
for bank_data in stored_banks:
|
||||
bank = VectorMemoryBankDef.model_validate_json(bank_data)
|
||||
index = BankWithIndex(
|
||||
bank=bank, index=FaissIndex(ALL_MINILM_L6_V2_DIMENSION)
|
||||
)
|
||||
self.cache[bank.identifier] = index
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
# Cleanup if needed
|
||||
pass
|
||||
|
||||
async def register_memory_bank(
|
||||
self,
|
||||
memory_bank: MemoryBankDef,
|
||||
) -> None:
|
||||
assert (
|
||||
memory_bank.type == MemoryBankType.vector.value
|
||||
), f"Only vector banks are supported {memory_bank.type}"
|
||||
|
||||
# Store in kvstore
|
||||
key = f"{MEMORY_BANKS_PREFIX}{memory_bank.identifier}"
|
||||
await self.kvstore.set(
|
||||
key=key,
|
||||
value=memory_bank.json(),
|
||||
)
|
||||
|
||||
# Store in cache
|
||||
index = BankWithIndex(
|
||||
bank=memory_bank, index=FaissIndex(ALL_MINILM_L6_V2_DIMENSION)
|
||||
)
|
||||
self.cache[memory_bank.identifier] = index
|
||||
|
||||
async def list_memory_banks(self) -> List[MemoryBankDef]:
|
||||
return [i.bank for i in self.cache.values()]
|
||||
|
||||
async def insert_documents(
|
||||
self,
|
||||
bank_id: str,
|
||||
documents: List[MemoryBankDocument],
|
||||
ttl_seconds: Optional[int] = None,
|
||||
) -> None:
|
||||
index = self.cache.get(bank_id)
|
||||
if index is None:
|
||||
raise ValueError(f"Bank {bank_id} not found")
|
||||
|
||||
await index.insert_documents(documents)
|
||||
|
||||
async def query_documents(
|
||||
self,
|
||||
bank_id: str,
|
||||
query: InterleavedTextMedia,
|
||||
params: Optional[Dict[str, Any]] = None,
|
||||
) -> QueryDocumentsResponse:
|
||||
index = self.cache.get(bank_id)
|
||||
if index is None:
|
||||
raise ValueError(f"Bank {bank_id} not found")
|
||||
|
||||
return await index.query_documents(query, params)
|
Loading…
Add table
Add a link
Reference in a new issue