forked from phoenix-oss/llama-stack-mirror
impls
-> inline
, adapters
-> remote
(#381)
This commit is contained in:
parent
b10e9f46bb
commit
994732e2e0
169 changed files with 106 additions and 105 deletions
170
llama_stack/providers/remote/memory/qdrant/qdrant.py
Normal file
170
llama_stack/providers/remote/memory/qdrant/qdrant.py
Normal file
|
@ -0,0 +1,170 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import traceback
|
||||
import uuid
|
||||
from typing import Any, Dict, List
|
||||
|
||||
from numpy.typing import NDArray
|
||||
from qdrant_client import AsyncQdrantClient, models
|
||||
from qdrant_client.models import PointStruct
|
||||
|
||||
from llama_stack.providers.datatypes import MemoryBanksProtocolPrivate
|
||||
|
||||
from llama_stack.apis.memory import * # noqa: F403
|
||||
|
||||
from llama_stack.providers.remote.memory.qdrant.config import QdrantConfig
|
||||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
BankWithIndex,
|
||||
EmbeddingIndex,
|
||||
)
|
||||
|
||||
CHUNK_ID_KEY = "_chunk_id"
|
||||
|
||||
|
||||
def convert_id(_id: str) -> str:
|
||||
"""
|
||||
Converts any string into a UUID string based on a seed.
|
||||
|
||||
Qdrant accepts UUID strings and unsigned integers as point ID.
|
||||
We use a seed to convert each string into a UUID string deterministically.
|
||||
This allows us to overwrite the same point with the original ID.
|
||||
"""
|
||||
return str(uuid.uuid5(uuid.NAMESPACE_DNS, _id))
|
||||
|
||||
|
||||
class QdrantIndex(EmbeddingIndex):
|
||||
def __init__(self, client: AsyncQdrantClient, collection_name: str):
|
||||
self.client = client
|
||||
self.collection_name = collection_name
|
||||
|
||||
async def add_chunks(self, chunks: List[Chunk], embeddings: NDArray):
|
||||
assert len(chunks) == len(
|
||||
embeddings
|
||||
), f"Chunk length {len(chunks)} does not match embedding length {len(embeddings)}"
|
||||
|
||||
if not await self.client.collection_exists(self.collection_name):
|
||||
await self.client.create_collection(
|
||||
self.collection_name,
|
||||
vectors_config=models.VectorParams(
|
||||
size=len(embeddings[0]), distance=models.Distance.COSINE
|
||||
),
|
||||
)
|
||||
|
||||
points = []
|
||||
for i, (chunk, embedding) in enumerate(zip(chunks, embeddings)):
|
||||
chunk_id = f"{chunk.document_id}:chunk-{i}"
|
||||
points.append(
|
||||
PointStruct(
|
||||
id=convert_id(chunk_id),
|
||||
vector=embedding,
|
||||
payload={"chunk_content": chunk.model_dump()}
|
||||
| {CHUNK_ID_KEY: chunk_id},
|
||||
)
|
||||
)
|
||||
|
||||
await self.client.upsert(collection_name=self.collection_name, points=points)
|
||||
|
||||
async def query(
|
||||
self, embedding: NDArray, k: int, score_threshold: float
|
||||
) -> QueryDocumentsResponse:
|
||||
results = (
|
||||
await self.client.query_points(
|
||||
collection_name=self.collection_name,
|
||||
query=embedding.tolist(),
|
||||
limit=k,
|
||||
with_payload=True,
|
||||
score_threshold=score_threshold,
|
||||
)
|
||||
).points
|
||||
|
||||
chunks, scores = [], []
|
||||
for point in results:
|
||||
assert isinstance(point, models.ScoredPoint)
|
||||
assert point.payload is not None
|
||||
|
||||
try:
|
||||
chunk = Chunk(**point.payload["chunk_content"])
|
||||
except Exception:
|
||||
traceback.print_exc()
|
||||
continue
|
||||
|
||||
chunks.append(chunk)
|
||||
scores.append(point.score)
|
||||
|
||||
return QueryDocumentsResponse(chunks=chunks, scores=scores)
|
||||
|
||||
|
||||
class QdrantVectorMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
|
||||
def __init__(self, config: QdrantConfig) -> None:
|
||||
self.config = config
|
||||
self.client = AsyncQdrantClient(**self.config.model_dump(exclude_none=True))
|
||||
self.cache = {}
|
||||
|
||||
async def initialize(self) -> None:
|
||||
pass
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
self.client.close()
|
||||
|
||||
async def register_memory_bank(
|
||||
self,
|
||||
memory_bank: MemoryBankDef,
|
||||
) -> None:
|
||||
assert (
|
||||
memory_bank.type == MemoryBankType.vector.value
|
||||
), f"Only vector banks are supported {memory_bank.type}"
|
||||
|
||||
index = BankWithIndex(
|
||||
bank=memory_bank,
|
||||
index=QdrantIndex(self.client, memory_bank.identifier),
|
||||
)
|
||||
|
||||
self.cache[memory_bank.identifier] = index
|
||||
|
||||
async def list_memory_banks(self) -> List[MemoryBankDef]:
|
||||
# Qdrant doesn't have collection level metadata to store the bank properties
|
||||
# So we only return from the cache value
|
||||
return [i.bank for i in self.cache.values()]
|
||||
|
||||
async def _get_and_cache_bank_index(self, bank_id: str) -> Optional[BankWithIndex]:
|
||||
if bank_id in self.cache:
|
||||
return self.cache[bank_id]
|
||||
|
||||
bank = await self.memory_bank_store.get_memory_bank(bank_id)
|
||||
if not bank:
|
||||
raise ValueError(f"Bank {bank_id} not found")
|
||||
|
||||
index = BankWithIndex(
|
||||
bank=bank,
|
||||
index=QdrantIndex(client=self.client, collection_name=bank_id),
|
||||
)
|
||||
self.cache[bank_id] = index
|
||||
return index
|
||||
|
||||
async def insert_documents(
|
||||
self,
|
||||
bank_id: str,
|
||||
documents: List[MemoryBankDocument],
|
||||
ttl_seconds: Optional[int] = None,
|
||||
) -> None:
|
||||
index = await self._get_and_cache_bank_index(bank_id)
|
||||
if not index:
|
||||
raise ValueError(f"Bank {bank_id} not found")
|
||||
|
||||
await index.insert_documents(documents)
|
||||
|
||||
async def query_documents(
|
||||
self,
|
||||
bank_id: str,
|
||||
query: InterleavedTextMedia,
|
||||
params: Optional[Dict[str, Any]] = None,
|
||||
) -> QueryDocumentsResponse:
|
||||
index = await self._get_and_cache_bank_index(bank_id)
|
||||
if not index:
|
||||
raise ValueError(f"Bank {bank_id} not found")
|
||||
|
||||
return await index.query_documents(query, params)
|
Loading…
Add table
Add a link
Reference in a new issue