forked from phoenix-oss/llama-stack-mirror
chore: enable pyupgrade fixes (#1806)
# What does this PR do? The goal of this PR is code base modernization. Schema reflection code needed a minor adjustment to handle UnionTypes and collections.abc.AsyncIterator. (Both are preferred for latest Python releases.) Note to reviewers: almost all changes here are automatically generated by pyupgrade. Some additional unused imports were cleaned up. The only change worth of note can be found under `docs/openapi_generator` and `llama_stack/strong_typing/schema.py` where reflection code was updated to deal with "newer" types. Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
This commit is contained in:
parent
ffe3d0b2cd
commit
9e6561a1ec
319 changed files with 2843 additions and 3033 deletions
|
@ -6,8 +6,9 @@
|
|||
|
||||
import logging
|
||||
import math
|
||||
from collections.abc import Callable
|
||||
from functools import partial
|
||||
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
||||
from typing import Any
|
||||
|
||||
import fairscale.nn.model_parallel.initialize as fs_init
|
||||
import torch
|
||||
|
@ -104,9 +105,9 @@ class ColumnParallelConv2dPatch(torch.nn.Module):
|
|||
self,
|
||||
in_channels: int,
|
||||
out_channels: int,
|
||||
kernel_size: Union[int, Tuple[int, int]],
|
||||
stride: Union[int, Tuple[int, int]],
|
||||
bias: Optional[bool] = False,
|
||||
kernel_size: int | tuple[int, int],
|
||||
stride: int | tuple[int, int],
|
||||
bias: bool | None = False,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
if isinstance(kernel_size, int):
|
||||
|
@ -390,13 +391,13 @@ class VisionEncoder(nn.Module):
|
|||
|
||||
def load_hook(
|
||||
self,
|
||||
state_dict: Dict[str, Any],
|
||||
state_dict: dict[str, Any],
|
||||
prefix: str,
|
||||
local_metadata: Dict[str, Any],
|
||||
local_metadata: dict[str, Any],
|
||||
strict: bool = True,
|
||||
missing_keys: List[str] = None,
|
||||
unexpected_keys: List[str] = None,
|
||||
error_msgs: List[str] = None,
|
||||
missing_keys: list[str] = None,
|
||||
unexpected_keys: list[str] = None,
|
||||
error_msgs: list[str] = None,
|
||||
return_state_dict: bool = False,
|
||||
) -> None:
|
||||
orig_pos_embed = state_dict.get(prefix + "positional_embedding")
|
||||
|
@ -641,7 +642,7 @@ class FeedForward(nn.Module):
|
|||
dim: int,
|
||||
hidden_dim: int,
|
||||
multiple_of: int,
|
||||
ffn_dim_multiplier: Optional[float],
|
||||
ffn_dim_multiplier: float | None,
|
||||
):
|
||||
"""
|
||||
Initialize the FeedForward module.
|
||||
|
@ -983,7 +984,7 @@ class CrossAttentionTransformerBlock(torch.nn.Module):
|
|||
self,
|
||||
x: torch.Tensor,
|
||||
xattn_mask: torch.Tensor,
|
||||
full_text_row_masked_out_mask: Tuple[torch.Tensor, torch.Tensor],
|
||||
full_text_row_masked_out_mask: tuple[torch.Tensor, torch.Tensor],
|
||||
xattn_cache: torch.Tensor,
|
||||
) -> torch.Tensor:
|
||||
_attn_out = self.attention(
|
||||
|
@ -1144,7 +1145,7 @@ class CrossAttentionTransformerText(torch.nn.Module):
|
|||
def _init_fusion_schedule(
|
||||
self,
|
||||
num_layers: int,
|
||||
) -> List[int]:
|
||||
) -> list[int]:
|
||||
llama_layers = list(range(self.n_llama_layers))
|
||||
|
||||
# uniformly spread the layers
|
||||
|
@ -1231,7 +1232,7 @@ class CrossAttentionTransformerText(torch.nn.Module):
|
|||
text_dtype,
|
||||
vision_tokens,
|
||||
cross_attention_masks,
|
||||
) -> Tuple[Tensor, Tensor]:
|
||||
) -> tuple[Tensor, Tensor]:
|
||||
assert vision_tokens is not None, "Vision tokens must be provided"
|
||||
vision_seqlen = vision_tokens.shape[3]
|
||||
assert vision_tokens.shape[1] == cross_attention_masks.shape[2], (
|
||||
|
@ -1280,11 +1281,11 @@ class CrossAttentionTransformer(torch.nn.Module):
|
|||
|
||||
def compute_vision_tokens_masks(
|
||||
self,
|
||||
batch_images: List[List[PIL_Image.Image]],
|
||||
batch_masks: List[List[List[int]]],
|
||||
batch_images: list[list[PIL_Image.Image]],
|
||||
batch_masks: list[list[list[int]]],
|
||||
total_len: int,
|
||||
device: torch.device,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
skip_vision_encoder = False
|
||||
|
||||
assert len(batch_images) == len(batch_masks), "Images and masks must have the same length"
|
||||
|
@ -1371,11 +1372,11 @@ class CrossAttentionTransformer(torch.nn.Module):
|
|||
|
||||
|
||||
def _stack_images(
|
||||
images: List[List[PIL_Image.Image]],
|
||||
images: list[list[PIL_Image.Image]],
|
||||
max_num_chunks: int,
|
||||
image_res: int,
|
||||
max_num_images: int,
|
||||
) -> Tuple[torch.Tensor, List[int]]:
|
||||
) -> tuple[torch.Tensor, list[int]]:
|
||||
"""
|
||||
Takes a list of list of images and stacks them into a tensor.
|
||||
This function is needed since images can be of completely
|
||||
|
@ -1400,8 +1401,8 @@ def _stack_images(
|
|||
|
||||
|
||||
def _pad_masks(
|
||||
all_masks: List[List[List[int]]],
|
||||
all_num_chunks: List[List[int]],
|
||||
all_masks: list[list[list[int]]],
|
||||
all_num_chunks: list[list[int]],
|
||||
total_len: int,
|
||||
max_num_chunks: int,
|
||||
) -> torch.Tensor:
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue