forked from phoenix-oss/llama-stack-mirror
chore: enable pyupgrade fixes (#1806)
# What does this PR do? The goal of this PR is code base modernization. Schema reflection code needed a minor adjustment to handle UnionTypes and collections.abc.AsyncIterator. (Both are preferred for latest Python releases.) Note to reviewers: almost all changes here are automatically generated by pyupgrade. Some additional unused imports were cleaned up. The only change worth of note can be found under `docs/openapi_generator` and `llama_stack/strong_typing/schema.py` where reflection code was updated to deal with "newer" types. Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
This commit is contained in:
parent
ffe3d0b2cd
commit
9e6561a1ec
319 changed files with 2843 additions and 3033 deletions
|
@ -13,7 +13,6 @@
|
|||
|
||||
import math
|
||||
from collections import defaultdict
|
||||
from typing import Optional, Set, Tuple
|
||||
|
||||
import torch
|
||||
import torchvision.transforms as tv
|
||||
|
@ -52,7 +51,7 @@ class ResizeNormalizeImageTransform:
|
|||
return self.tv_transform(image)
|
||||
|
||||
|
||||
class VariableSizeImageTransform(object):
|
||||
class VariableSizeImageTransform:
|
||||
"""
|
||||
This class accepts images of any size and dynamically resize, pads and chunks it
|
||||
based on the image aspect ratio and the number of image chunks we allow.
|
||||
|
@ -100,7 +99,7 @@ class VariableSizeImageTransform(object):
|
|||
self.resample = tv.InterpolationMode.BILINEAR
|
||||
|
||||
@staticmethod
|
||||
def get_factors(n: int) -> Set[int]:
|
||||
def get_factors(n: int) -> set[int]:
|
||||
"""
|
||||
Calculate all factors of a given number, i.e. a dividor that leaves
|
||||
no remainder. For example, if n=12, it will return {1, 2, 3, 4, 6, 12}.
|
||||
|
@ -170,9 +169,9 @@ class VariableSizeImageTransform(object):
|
|||
|
||||
@staticmethod
|
||||
def get_max_res_without_distortion(
|
||||
image_size: Tuple[int, int],
|
||||
target_size: Tuple[int, int],
|
||||
) -> Tuple[int, int]:
|
||||
image_size: tuple[int, int],
|
||||
target_size: tuple[int, int],
|
||||
) -> tuple[int, int]:
|
||||
"""
|
||||
Determines the maximum resolution to which an image can be resized to without distorting its
|
||||
aspect ratio, based on the target resolution.
|
||||
|
@ -223,8 +222,8 @@ class VariableSizeImageTransform(object):
|
|||
def resize_without_distortion(
|
||||
self,
|
||||
image: torch.Tensor,
|
||||
target_size: Tuple[int, int],
|
||||
max_upscaling_size: Optional[int],
|
||||
target_size: tuple[int, int],
|
||||
max_upscaling_size: int | None,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Used to resize an image to target_resolution, without distortion.
|
||||
|
@ -289,10 +288,10 @@ class VariableSizeImageTransform(object):
|
|||
|
||||
def get_best_fit(
|
||||
self,
|
||||
image_size: Tuple[int, int],
|
||||
image_size: tuple[int, int],
|
||||
possible_resolutions: torch.Tensor,
|
||||
resize_to_max_canvas: bool = False,
|
||||
) -> Tuple[int, int]:
|
||||
) -> tuple[int, int]:
|
||||
"""
|
||||
Determines the best canvas possible from a list of possible resolutions to, without distortion,
|
||||
resize an image to.
|
||||
|
@ -392,7 +391,7 @@ class VariableSizeImageTransform(object):
|
|||
max_num_chunks: int,
|
||||
normalize_img: bool = True,
|
||||
resize_to_max_canvas: bool = False,
|
||||
) -> Tuple[torch.Tensor, Tuple[int, int]]:
|
||||
) -> tuple[torch.Tensor, tuple[int, int]]:
|
||||
"""
|
||||
Args:
|
||||
image (PIL.Image): Image to be resized.
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue