chore: enable pyupgrade fixes (#1806)

# What does this PR do?

The goal of this PR is code base modernization.

Schema reflection code needed a minor adjustment to handle UnionTypes
and collections.abc.AsyncIterator. (Both are preferred for latest Python
releases.)

Note to reviewers: almost all changes here are automatically generated
by pyupgrade. Some additional unused imports were cleaned up. The only
change worth of note can be found under `docs/openapi_generator` and
`llama_stack/strong_typing/schema.py` where reflection code was updated
to deal with "newer" types.

Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
This commit is contained in:
Ihar Hrachyshka 2025-05-01 17:23:50 -04:00 committed by GitHub
parent ffe3d0b2cd
commit 9e6561a1ec
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
319 changed files with 2843 additions and 3033 deletions

View file

@ -4,13 +4,11 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Union
from .config import InferenceAPIImplConfig, InferenceEndpointImplConfig, TGIImplConfig
async def get_adapter_impl(
config: Union[InferenceAPIImplConfig, InferenceEndpointImplConfig, TGIImplConfig],
config: InferenceAPIImplConfig | InferenceEndpointImplConfig | TGIImplConfig,
_deps,
):
from .tgi import InferenceAPIAdapter, InferenceEndpointAdapter, TGIAdapter

View file

@ -4,7 +4,6 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Optional
from pydantic import BaseModel, Field, SecretStr
@ -29,7 +28,7 @@ class InferenceEndpointImplConfig(BaseModel):
endpoint_name: str = Field(
description="The name of the Hugging Face Inference Endpoint in the format of '{namespace}/{endpoint_name}' (e.g. 'my-cool-org/meta-llama-3-1-8b-instruct-rce'). Namespace is optional and will default to the user account if not provided.",
)
api_token: Optional[SecretStr] = Field(
api_token: SecretStr | None = Field(
default=None,
description="Your Hugging Face user access token (will default to locally saved token if not provided)",
)
@ -52,7 +51,7 @@ class InferenceAPIImplConfig(BaseModel):
huggingface_repo: str = Field(
description="The model ID of the model on the Hugging Face Hub (e.g. 'meta-llama/Meta-Llama-3.1-70B-Instruct')",
)
api_token: Optional[SecretStr] = Field(
api_token: SecretStr | None = Field(
default=None,
description="Your Hugging Face user access token (will default to locally saved token if not provided)",
)

View file

@ -6,7 +6,7 @@
import logging
from typing import AsyncGenerator, List, Optional
from collections.abc import AsyncGenerator
from huggingface_hub import AsyncInferenceClient, HfApi
@ -105,10 +105,10 @@ class _HfAdapter(
self,
model_id: str,
content: InterleavedContent,
sampling_params: Optional[SamplingParams] = None,
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
sampling_params: SamplingParams | None = None,
response_format: ResponseFormat | None = None,
stream: bool | None = False,
logprobs: LogProbConfig | None = None,
) -> AsyncGenerator:
if sampling_params is None:
sampling_params = SamplingParams()
@ -134,7 +134,7 @@ class _HfAdapter(
def _build_options(
self,
sampling_params: Optional[SamplingParams] = None,
sampling_params: SamplingParams | None = None,
fmt: ResponseFormat = None,
):
options = get_sampling_options(sampling_params)
@ -209,15 +209,15 @@ class _HfAdapter(
async def chat_completion(
self,
model_id: str,
messages: List[Message],
sampling_params: Optional[SamplingParams] = None,
tools: Optional[List[ToolDefinition]] = None,
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
tool_prompt_format: Optional[ToolPromptFormat] = None,
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
tool_config: Optional[ToolConfig] = None,
messages: list[Message],
sampling_params: SamplingParams | None = None,
tools: list[ToolDefinition] | None = None,
tool_choice: ToolChoice | None = ToolChoice.auto,
tool_prompt_format: ToolPromptFormat | None = None,
response_format: ResponseFormat | None = None,
stream: bool | None = False,
logprobs: LogProbConfig | None = None,
tool_config: ToolConfig | None = None,
) -> AsyncGenerator:
if sampling_params is None:
sampling_params = SamplingParams()
@ -284,10 +284,10 @@ class _HfAdapter(
async def embeddings(
self,
model_id: str,
contents: List[str] | List[InterleavedContentItem],
text_truncation: Optional[TextTruncation] = TextTruncation.none,
output_dimension: Optional[int] = None,
task_type: Optional[EmbeddingTaskType] = None,
contents: list[str] | list[InterleavedContentItem],
text_truncation: TextTruncation | None = TextTruncation.none,
output_dimension: int | None = None,
task_type: EmbeddingTaskType | None = None,
) -> EmbeddingsResponse:
raise NotImplementedError()