forked from phoenix-oss/llama-stack-mirror
[/scoring] add ability to define aggregation functions for scoring functions & refactors (#597)
# What does this PR do? - Add ability to define aggregation functions for scoring functions via `ScoringFnParams` - Supported by `basic` / `regex_parser` / `llm_as_judge` scoring functions ## Test Plan ``` pytest -v -s -m basic_scoring_together_inference scoring/test_scoring.py ``` <img width="855" alt="image" src="https://github.com/user-attachments/assets/12db8e6e-2ad4-462e-b9b9-70ba6c050a6c"> ``` pytest -v -s -m llm_as_judge_scoring_together_inference scoring/test_scoring.py ``` <img width="858" alt="image" src="https://github.com/user-attachments/assets/bf806676-6f5e-456d-be9f-f81a26d1df19"> **Example Response** (`basic`) <img width="863" alt="image" src="https://github.com/user-attachments/assets/0e57a49c-8386-45cc-8fa9-3e61aaa9a3be"> **Example Response** (`llm-as-judge`) <img width="854" alt="image" src="https://github.com/user-attachments/assets/38065bc2-b724-47ed-9535-79b6099c4362"> ## Sources Please link relevant resources if necessary. ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Ran pre-commit to handle lint / formatting issues. - [ ] Read the [contributor guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md), Pull Request section? - [ ] Updated relevant documentation. - [ ] Wrote necessary unit or integration tests.
This commit is contained in:
parent
e128f2547a
commit
a4bcfb8bba
16 changed files with 323 additions and 55 deletions
|
@ -3,9 +3,10 @@
|
|||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
import statistics
|
||||
from typing import Any, Dict, List
|
||||
|
||||
from llama_stack.apis.scoring import ScoringResultRow
|
||||
from llama_stack.apis.scoring import AggregationFunctionType, ScoringResultRow
|
||||
|
||||
|
||||
def aggregate_accuracy(scoring_results: List[ScoringResultRow]) -> Dict[str, Any]:
|
||||
|
@ -26,3 +27,38 @@ def aggregate_average(scoring_results: List[ScoringResultRow]) -> Dict[str, Any]
|
|||
)
|
||||
/ len([_ for _ in scoring_results if _["score"] is not None]),
|
||||
}
|
||||
|
||||
|
||||
def aggregate_categorical_count(
|
||||
scoring_results: List[ScoringResultRow],
|
||||
) -> Dict[str, Any]:
|
||||
scores = [str(r["score"]) for r in scoring_results]
|
||||
unique_scores = sorted(list(set(scores)))
|
||||
return {"categorical_count": {s: scores.count(s) for s in unique_scores}}
|
||||
|
||||
|
||||
def aggregate_median(scoring_results: List[ScoringResultRow]) -> Dict[str, Any]:
|
||||
scores = [r["score"] for r in scoring_results if r["score"] is not None]
|
||||
median = statistics.median(scores) if scores else None
|
||||
return {"median": median}
|
||||
|
||||
|
||||
# TODO: decide whether we want to make aggregation functions as a registerable resource
|
||||
AGGREGATION_FUNCTIONS = {
|
||||
AggregationFunctionType.accuracy: aggregate_accuracy,
|
||||
AggregationFunctionType.average: aggregate_average,
|
||||
AggregationFunctionType.categorical_count: aggregate_categorical_count,
|
||||
AggregationFunctionType.median: aggregate_median,
|
||||
}
|
||||
|
||||
|
||||
def aggregate_metrics(
|
||||
scoring_results: List[ScoringResultRow], metrics: List[AggregationFunctionType]
|
||||
) -> Dict[str, Any]:
|
||||
agg_results = {}
|
||||
for metric in metrics:
|
||||
if metric not in AGGREGATION_FUNCTIONS:
|
||||
raise ValueError(f"Aggregation function {metric} not found")
|
||||
agg_fn = AGGREGATION_FUNCTIONS[metric]
|
||||
agg_results[metric] = agg_fn(scoring_results)
|
||||
return agg_results
|
||||
|
|
|
@ -8,11 +8,12 @@ from typing import Any, Dict, List, Optional
|
|||
|
||||
from llama_stack.apis.scoring import ScoringFnParams, ScoringResultRow
|
||||
from llama_stack.apis.scoring_functions import ScoringFn
|
||||
from llama_stack.providers.utils.scoring.aggregation_utils import aggregate_metrics
|
||||
|
||||
|
||||
class BaseScoringFn(ABC):
|
||||
"""
|
||||
Base interface class for all meta-reference scoring_fns.
|
||||
Base interface class for all native scoring_fns.
|
||||
Each scoring_fn needs to implement the following methods:
|
||||
- score_row(self, row)
|
||||
- aggregate(self, scoring_fn_results)
|
||||
|
@ -44,11 +45,27 @@ class BaseScoringFn(ABC):
|
|||
) -> ScoringResultRow:
|
||||
raise NotImplementedError()
|
||||
|
||||
@abstractmethod
|
||||
async def aggregate(
|
||||
self, scoring_results: List[ScoringResultRow]
|
||||
self,
|
||||
scoring_results: List[ScoringResultRow],
|
||||
scoring_fn_identifier: Optional[str] = None,
|
||||
scoring_params: Optional[ScoringFnParams] = None,
|
||||
) -> Dict[str, Any]:
|
||||
raise NotImplementedError()
|
||||
params = self.supported_fn_defs_registry[scoring_fn_identifier].params
|
||||
if scoring_params is not None:
|
||||
if params is None:
|
||||
params = scoring_params
|
||||
else:
|
||||
params.aggregation_functions = scoring_params.aggregation_functions
|
||||
|
||||
aggregation_functions = []
|
||||
if (
|
||||
params
|
||||
and hasattr(params, "aggregation_functions")
|
||||
and params.aggregation_functions
|
||||
):
|
||||
aggregation_functions.extend(params.aggregation_functions)
|
||||
return aggregate_metrics(scoring_results, aggregation_functions)
|
||||
|
||||
async def score(
|
||||
self,
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue