forked from phoenix-oss/llama-stack-mirror
agents to use tools api (#673)
# What does this PR do? PR #639 introduced the notion of Tools API and ability to invoke tools through API just as any resource. This PR changes the Agents to start using the Tools API to invoke tools. Major changes include: 1) Ability to specify tool groups with AgentConfig 2) Agent gets the corresponding tool definitions for the specified tools and pass along to the model 3) Attachements are now named as Documents and their behavior is mostly unchanged from user perspective 4) You can specify args that can be injected to a tool call through Agent config. This is especially useful in case of memory tool, where you want the tool to operate on a specific memory bank. 5) You can also register tool groups with args, which lets the agent inject these as well into the tool call. 6) All tests have been migrated to use new tools API and fixtures including client SDK tests 7) Telemetry just works with tools API because of our trace protocol decorator ## Test Plan ``` pytest -s -v -k fireworks llama_stack/providers/tests/agents/test_agents.py \ --safety-shield=meta-llama/Llama-Guard-3-8B \ --inference-model=meta-llama/Llama-3.1-8B-Instruct pytest -s -v -k together llama_stack/providers/tests/tools/test_tools.py \ --safety-shield=meta-llama/Llama-Guard-3-8B \ --inference-model=meta-llama/Llama-3.1-8B-Instruct LLAMA_STACK_CONFIG="/Users/dineshyv/.llama/distributions/llamastack-together/together-run.yaml" pytest -v tests/client-sdk/agents/test_agents.py ``` run.yaml: https://gist.github.com/dineshyv/0365845ad325e1c2cab755788ccc5994 Notebook: https://colab.research.google.com/drive/1ck7hXQxRl6UvT-ijNRZ-gMZxH1G3cN2d?usp=sharing
This commit is contained in:
parent
596afc6497
commit
a5c57cd381
116 changed files with 4959 additions and 2778 deletions
20
llama_stack/providers/inline/tool_runtime/memory/__init__.py
Normal file
20
llama_stack/providers/inline/tool_runtime/memory/__init__.py
Normal file
|
@ -0,0 +1,20 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict
|
||||
|
||||
from llama_stack.providers.datatypes import Api
|
||||
|
||||
from .config import MemoryToolRuntimeConfig
|
||||
from .memory import MemoryToolRuntimeImpl
|
||||
|
||||
|
||||
async def get_provider_impl(config: MemoryToolRuntimeConfig, deps: Dict[str, Any]):
|
||||
impl = MemoryToolRuntimeImpl(
|
||||
config, deps[Api.memory], deps[Api.memory_banks], deps[Api.inference]
|
||||
)
|
||||
await impl.initialize()
|
||||
return impl
|
90
llama_stack/providers/inline/tool_runtime/memory/config.py
Normal file
90
llama_stack/providers/inline/tool_runtime/memory/config.py
Normal file
|
@ -0,0 +1,90 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from enum import Enum
|
||||
from typing import Annotated, List, Literal, Union
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class _MemoryBankConfigCommon(BaseModel):
|
||||
bank_id: str
|
||||
|
||||
|
||||
class VectorMemoryBankConfig(_MemoryBankConfigCommon):
|
||||
type: Literal["vector"] = "vector"
|
||||
|
||||
|
||||
class KeyValueMemoryBankConfig(_MemoryBankConfigCommon):
|
||||
type: Literal["keyvalue"] = "keyvalue"
|
||||
keys: List[str] # what keys to focus on
|
||||
|
||||
|
||||
class KeywordMemoryBankConfig(_MemoryBankConfigCommon):
|
||||
type: Literal["keyword"] = "keyword"
|
||||
|
||||
|
||||
class GraphMemoryBankConfig(_MemoryBankConfigCommon):
|
||||
type: Literal["graph"] = "graph"
|
||||
entities: List[str] # what entities to focus on
|
||||
|
||||
|
||||
MemoryBankConfig = Annotated[
|
||||
Union[
|
||||
VectorMemoryBankConfig,
|
||||
KeyValueMemoryBankConfig,
|
||||
KeywordMemoryBankConfig,
|
||||
GraphMemoryBankConfig,
|
||||
],
|
||||
Field(discriminator="type"),
|
||||
]
|
||||
|
||||
|
||||
class MemoryQueryGenerator(Enum):
|
||||
default = "default"
|
||||
llm = "llm"
|
||||
custom = "custom"
|
||||
|
||||
|
||||
class DefaultMemoryQueryGeneratorConfig(BaseModel):
|
||||
type: Literal[MemoryQueryGenerator.default.value] = (
|
||||
MemoryQueryGenerator.default.value
|
||||
)
|
||||
sep: str = " "
|
||||
|
||||
|
||||
class LLMMemoryQueryGeneratorConfig(BaseModel):
|
||||
type: Literal[MemoryQueryGenerator.llm.value] = MemoryQueryGenerator.llm.value
|
||||
model: str
|
||||
template: str
|
||||
|
||||
|
||||
class CustomMemoryQueryGeneratorConfig(BaseModel):
|
||||
type: Literal[MemoryQueryGenerator.custom.value] = MemoryQueryGenerator.custom.value
|
||||
|
||||
|
||||
MemoryQueryGeneratorConfig = Annotated[
|
||||
Union[
|
||||
DefaultMemoryQueryGeneratorConfig,
|
||||
LLMMemoryQueryGeneratorConfig,
|
||||
CustomMemoryQueryGeneratorConfig,
|
||||
],
|
||||
Field(discriminator="type"),
|
||||
]
|
||||
|
||||
|
||||
class MemoryToolConfig(BaseModel):
|
||||
memory_bank_configs: List[MemoryBankConfig] = Field(default_factory=list)
|
||||
|
||||
|
||||
class MemoryToolRuntimeConfig(BaseModel):
|
||||
# This config defines how a query is generated using the messages
|
||||
# for memory bank retrieval.
|
||||
query_generator_config: MemoryQueryGeneratorConfig = Field(
|
||||
default=DefaultMemoryQueryGeneratorConfig()
|
||||
)
|
||||
max_tokens_in_context: int = 4096
|
||||
max_chunks: int = 5
|
|
@ -0,0 +1,81 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
|
||||
from typing import List
|
||||
|
||||
from jinja2 import Template
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llama_stack.apis.common.content_types import InterleavedContent
|
||||
from llama_stack.apis.inference import UserMessage
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
interleaved_content_as_str,
|
||||
)
|
||||
|
||||
from .config import (
|
||||
DefaultMemoryQueryGeneratorConfig,
|
||||
LLMMemoryQueryGeneratorConfig,
|
||||
MemoryQueryGenerator,
|
||||
MemoryQueryGeneratorConfig,
|
||||
)
|
||||
|
||||
|
||||
async def generate_rag_query(
|
||||
config: MemoryQueryGeneratorConfig,
|
||||
messages: List[InterleavedContent],
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Generates a query that will be used for
|
||||
retrieving relevant information from the memory bank.
|
||||
"""
|
||||
if config.type == MemoryQueryGenerator.default.value:
|
||||
query = await default_rag_query_generator(config, messages, **kwargs)
|
||||
elif config.type == MemoryQueryGenerator.llm.value:
|
||||
query = await llm_rag_query_generator(config, messages, **kwargs)
|
||||
else:
|
||||
raise NotImplementedError(f"Unsupported memory query generator {config.type}")
|
||||
return query
|
||||
|
||||
|
||||
async def default_rag_query_generator(
|
||||
config: DefaultMemoryQueryGeneratorConfig,
|
||||
messages: List[InterleavedContent],
|
||||
**kwargs,
|
||||
):
|
||||
return config.sep.join(interleaved_content_as_str(m) for m in messages)
|
||||
|
||||
|
||||
async def llm_rag_query_generator(
|
||||
config: LLMMemoryQueryGeneratorConfig,
|
||||
messages: List[InterleavedContent],
|
||||
**kwargs,
|
||||
):
|
||||
assert "inference_api" in kwargs, "LLMRAGQueryGenerator needs inference_api"
|
||||
inference_api = kwargs["inference_api"]
|
||||
|
||||
m_dict = {
|
||||
"messages": [
|
||||
message.model_dump() if isinstance(message, BaseModel) else message
|
||||
for message in messages
|
||||
]
|
||||
}
|
||||
|
||||
template = Template(config.template)
|
||||
content = template.render(m_dict)
|
||||
|
||||
model = config.model
|
||||
message = UserMessage(content=content)
|
||||
response = await inference_api.chat_completion(
|
||||
model_id=model,
|
||||
messages=[message],
|
||||
stream=False,
|
||||
)
|
||||
|
||||
query = response.completion_message.content
|
||||
|
||||
return query
|
146
llama_stack/providers/inline/tool_runtime/memory/memory.py
Normal file
146
llama_stack/providers/inline/tool_runtime/memory/memory.py
Normal file
|
@ -0,0 +1,146 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import asyncio
|
||||
import logging
|
||||
import secrets
|
||||
import string
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from llama_stack.apis.common.content_types import URL
|
||||
from llama_stack.apis.inference import Inference, InterleavedContent
|
||||
from llama_stack.apis.memory import Memory, QueryDocumentsResponse
|
||||
from llama_stack.apis.memory_banks import MemoryBanks
|
||||
from llama_stack.apis.tools import (
|
||||
ToolDef,
|
||||
ToolInvocationResult,
|
||||
ToolParameter,
|
||||
ToolRuntime,
|
||||
)
|
||||
from llama_stack.providers.datatypes import ToolsProtocolPrivate
|
||||
from llama_stack.providers.utils.memory.vector_store import concat_interleaved_content
|
||||
|
||||
from .config import MemoryToolConfig, MemoryToolRuntimeConfig
|
||||
from .context_retriever import generate_rag_query
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def make_random_string(length: int = 8):
|
||||
return "".join(
|
||||
secrets.choice(string.ascii_letters + string.digits) for _ in range(length)
|
||||
)
|
||||
|
||||
|
||||
class MemoryToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime):
|
||||
def __init__(
|
||||
self,
|
||||
config: MemoryToolRuntimeConfig,
|
||||
memory_api: Memory,
|
||||
memory_banks_api: MemoryBanks,
|
||||
inference_api: Inference,
|
||||
):
|
||||
self.config = config
|
||||
self.memory_api = memory_api
|
||||
self.memory_banks_api = memory_banks_api
|
||||
self.inference_api = inference_api
|
||||
|
||||
async def initialize(self):
|
||||
pass
|
||||
|
||||
async def list_runtime_tools(
|
||||
self, tool_group_id: Optional[str] = None, mcp_endpoint: Optional[URL] = None
|
||||
) -> List[ToolDef]:
|
||||
return [
|
||||
ToolDef(
|
||||
name="query_memory",
|
||||
description="Retrieve context from memory",
|
||||
parameters=[
|
||||
ToolParameter(
|
||||
name="messages",
|
||||
description="The input messages to search for",
|
||||
parameter_type="array",
|
||||
),
|
||||
],
|
||||
)
|
||||
]
|
||||
|
||||
async def _retrieve_context(
|
||||
self, input_messages: List[InterleavedContent], bank_ids: List[str]
|
||||
) -> Optional[List[InterleavedContent]]:
|
||||
if not bank_ids:
|
||||
return None
|
||||
query = await generate_rag_query(
|
||||
self.config.query_generator_config,
|
||||
input_messages,
|
||||
inference_api=self.inference_api,
|
||||
)
|
||||
tasks = [
|
||||
self.memory_api.query_documents(
|
||||
bank_id=bank_id,
|
||||
query=query,
|
||||
params={
|
||||
"max_chunks": self.config.max_chunks,
|
||||
},
|
||||
)
|
||||
for bank_id in bank_ids
|
||||
]
|
||||
results: List[QueryDocumentsResponse] = await asyncio.gather(*tasks)
|
||||
chunks = [c for r in results for c in r.chunks]
|
||||
scores = [s for r in results for s in r.scores]
|
||||
|
||||
if not chunks:
|
||||
return None
|
||||
|
||||
# sort by score
|
||||
chunks, scores = zip(
|
||||
*sorted(zip(chunks, scores), key=lambda x: x[1], reverse=True)
|
||||
)
|
||||
|
||||
tokens = 0
|
||||
picked = []
|
||||
for c in chunks[: self.config.max_chunks]:
|
||||
tokens += c.token_count
|
||||
if tokens > self.config.max_tokens_in_context:
|
||||
log.error(
|
||||
f"Using {len(picked)} chunks; reached max tokens in context: {tokens}",
|
||||
)
|
||||
break
|
||||
picked.append(f"id:{c.document_id}; content:{c.content}")
|
||||
|
||||
return [
|
||||
"Here are the retrieved documents for relevant context:\n=== START-RETRIEVED-CONTEXT ===\n",
|
||||
*picked,
|
||||
"\n=== END-RETRIEVED-CONTEXT ===\n",
|
||||
]
|
||||
|
||||
async def invoke_tool(
|
||||
self, tool_name: str, args: Dict[str, Any]
|
||||
) -> ToolInvocationResult:
|
||||
tool = await self.tool_store.get_tool(tool_name)
|
||||
tool_group = await self.tool_store.get_tool_group(tool.toolgroup_id)
|
||||
final_args = tool_group.args or {}
|
||||
final_args.update(args)
|
||||
config = MemoryToolConfig()
|
||||
if tool.metadata and tool.metadata.get("config") is not None:
|
||||
config = MemoryToolConfig(**tool.metadata["config"])
|
||||
if "memory_bank_ids" in final_args:
|
||||
bank_ids = final_args["memory_bank_ids"]
|
||||
else:
|
||||
bank_ids = [
|
||||
bank_config.bank_id for bank_config in config.memory_bank_configs
|
||||
]
|
||||
if "messages" not in final_args:
|
||||
raise ValueError("messages are required")
|
||||
context = await self._retrieve_context(
|
||||
final_args["messages"],
|
||||
bank_ids,
|
||||
)
|
||||
if context is None:
|
||||
context = []
|
||||
return ToolInvocationResult(
|
||||
content=concat_interleaved_content(context), error_code=0
|
||||
)
|
Loading…
Add table
Add a link
Reference in a new issue