agents to use tools api (#673)

# What does this PR do?

PR #639 introduced the notion of Tools API and ability to invoke tools
through API just as any resource. This PR changes the Agents to start
using the Tools API to invoke tools. Major changes include:
1) Ability to specify tool groups with AgentConfig
2) Agent gets the corresponding tool definitions for the specified tools
and pass along to the model
3) Attachements are now named as Documents and their behavior is mostly
unchanged from user perspective
4) You can specify args that can be injected to a tool call through
Agent config. This is especially useful in case of memory tool, where
you want the tool to operate on a specific memory bank.
5) You can also register tool groups with args, which lets the agent
inject these as well into the tool call.
6) All tests have been migrated to use new tools API and fixtures
including client SDK tests
7) Telemetry just works with tools API because of our trace protocol
decorator


## Test Plan
```
pytest -s -v -k fireworks llama_stack/providers/tests/agents/test_agents.py  \
   --safety-shield=meta-llama/Llama-Guard-3-8B \
   --inference-model=meta-llama/Llama-3.1-8B-Instruct

pytest -s -v -k together  llama_stack/providers/tests/tools/test_tools.py \
   --safety-shield=meta-llama/Llama-Guard-3-8B \
   --inference-model=meta-llama/Llama-3.1-8B-Instruct

LLAMA_STACK_CONFIG="/Users/dineshyv/.llama/distributions/llamastack-together/together-run.yaml" pytest -v tests/client-sdk/agents/test_agents.py
```
run.yaml:
https://gist.github.com/dineshyv/0365845ad325e1c2cab755788ccc5994

Notebook:
https://colab.research.google.com/drive/1ck7hXQxRl6UvT-ijNRZ-gMZxH1G3cN2d?usp=sharing
This commit is contained in:
Dinesh Yeduguru 2025-01-08 19:01:00 -08:00 committed by GitHub
parent 596afc6497
commit a5c57cd381
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
116 changed files with 4959 additions and 2778 deletions

View file

@ -0,0 +1,130 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import os
import pytest
import pytest_asyncio
from llama_stack.apis.models import ModelInput, ModelType
from llama_stack.apis.tools import ToolGroupInput
from llama_stack.distribution.datatypes import Api, Provider
from llama_stack.providers.tests.resolver import construct_stack_for_test
from ..conftest import ProviderFixture
@pytest.fixture(scope="session")
def tool_runtime_memory_and_search() -> ProviderFixture:
return ProviderFixture(
providers=[
Provider(
provider_id="memory-runtime",
provider_type="inline::memory-runtime",
config={},
),
Provider(
provider_id="tavily-search",
provider_type="remote::tavily-search",
config={
"api_key": os.environ["TAVILY_SEARCH_API_KEY"],
},
),
Provider(
provider_id="wolfram-alpha",
provider_type="remote::wolfram-alpha",
config={
"api_key": os.environ["WOLFRAM_ALPHA_API_KEY"],
},
),
],
)
@pytest.fixture(scope="session")
def tool_group_input_memory() -> ToolGroupInput:
return ToolGroupInput(
toolgroup_id="builtin::memory",
provider_id="memory-runtime",
)
@pytest.fixture(scope="session")
def tool_group_input_tavily_search() -> ToolGroupInput:
return ToolGroupInput(
toolgroup_id="builtin::web_search",
provider_id="tavily-search",
)
@pytest.fixture(scope="session")
def tool_group_input_wolfram_alpha() -> ToolGroupInput:
return ToolGroupInput(
toolgroup_id="builtin::wolfram_alpha",
provider_id="wolfram-alpha",
)
TOOL_RUNTIME_FIXTURES = ["memory_and_search"]
@pytest_asyncio.fixture(scope="session")
async def tools_stack(
request,
inference_model,
tool_group_input_memory,
tool_group_input_tavily_search,
tool_group_input_wolfram_alpha,
):
fixture_dict = request.param
providers = {}
provider_data = {}
for key in ["inference", "memory", "tool_runtime"]:
fixture = request.getfixturevalue(f"{key}_{fixture_dict[key]}")
providers[key] = fixture.providers
if key == "inference":
providers[key].append(
Provider(
provider_id="tools_memory_provider",
provider_type="inline::sentence-transformers",
config={},
)
)
if fixture.provider_data:
provider_data.update(fixture.provider_data)
inference_models = (
inference_model if isinstance(inference_model, list) else [inference_model]
)
models = [
ModelInput(
model_id=model,
model_type=ModelType.llm,
provider_id=providers["inference"][0].provider_id,
)
for model in inference_models
]
models.append(
ModelInput(
model_id="all-MiniLM-L6-v2",
model_type=ModelType.embedding,
provider_id="tools_memory_provider",
metadata={"embedding_dimension": 384},
)
)
test_stack = await construct_stack_for_test(
[Api.tool_groups, Api.inference, Api.memory, Api.tool_runtime],
providers,
provider_data,
models=models,
tool_groups=[
tool_group_input_tavily_search,
tool_group_input_wolfram_alpha,
tool_group_input_memory,
],
)
return test_stack