Enable remote::vllm (#384)

* Enable remote::vllm

* Kill the giant list of hard coded models
This commit is contained in:
Ashwin Bharambe 2024-11-06 14:42:44 -08:00 committed by GitHub
parent 093c9f1987
commit b10e9f46bb
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
5 changed files with 80 additions and 53 deletions

View file

@ -8,6 +8,7 @@ from typing import AsyncGenerator
from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.datatypes import Message
from llama_models.llama3.api.tokenizer import Tokenizer
from llama_models.sku_list import all_registered_models, resolve_model
from openai import OpenAI
@ -23,42 +24,19 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
chat_completion_request_to_prompt,
)
from .config import VLLMImplConfig
VLLM_SUPPORTED_MODELS = {
"Llama3.1-8B": "meta-llama/Llama-3.1-8B",
"Llama3.1-70B": "meta-llama/Llama-3.1-70B",
"Llama3.1-405B:bf16-mp8": "meta-llama/Llama-3.1-405B",
"Llama3.1-405B": "meta-llama/Llama-3.1-405B-FP8",
"Llama3.1-405B:bf16-mp16": "meta-llama/Llama-3.1-405B",
"Llama3.1-8B-Instruct": "meta-llama/Llama-3.1-8B-Instruct",
"Llama3.1-70B-Instruct": "meta-llama/Llama-3.1-70B-Instruct",
"Llama3.1-405B-Instruct:bf16-mp8": "meta-llama/Llama-3.1-405B-Instruct",
"Llama3.1-405B-Instruct": "meta-llama/Llama-3.1-405B-Instruct-FP8",
"Llama3.1-405B-Instruct:bf16-mp16": "meta-llama/Llama-3.1-405B-Instruct",
"Llama3.2-1B": "meta-llama/Llama-3.2-1B",
"Llama3.2-3B": "meta-llama/Llama-3.2-3B",
"Llama3.2-11B-Vision": "meta-llama/Llama-3.2-11B-Vision",
"Llama3.2-90B-Vision": "meta-llama/Llama-3.2-90B-Vision",
"Llama3.2-1B-Instruct": "meta-llama/Llama-3.2-1B-Instruct",
"Llama3.2-3B-Instruct": "meta-llama/Llama-3.2-3B-Instruct",
"Llama3.2-11B-Vision-Instruct": "meta-llama/Llama-3.2-11B-Vision-Instruct",
"Llama3.2-90B-Vision-Instruct": "meta-llama/Llama-3.2-90B-Vision-Instruct",
"Llama-Guard-3-11B-Vision": "meta-llama/Llama-Guard-3-11B-Vision",
"Llama-Guard-3-1B:int4-mp1": "meta-llama/Llama-Guard-3-1B-INT4",
"Llama-Guard-3-1B": "meta-llama/Llama-Guard-3-1B",
"Llama-Guard-3-8B": "meta-llama/Llama-Guard-3-8B",
"Llama-Guard-3-8B:int8-mp1": "meta-llama/Llama-Guard-3-8B-INT8",
"Prompt-Guard-86M": "meta-llama/Prompt-Guard-86M",
"Llama-Guard-2-8B": "meta-llama/Llama-Guard-2-8B",
}
from .config import VLLMInferenceAdapterConfig
class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
def __init__(self, config: VLLMImplConfig) -> None:
def __init__(self, config: VLLMInferenceAdapterConfig) -> None:
self.config = config
self.formatter = ChatFormat(Tokenizer.get_instance())
self.client = None
self.huggingface_repo_to_llama_model_id = {
model.huggingface_repo: model.descriptor()
for model in all_registered_models()
if model.huggingface_repo
}
async def initialize(self) -> None:
self.client = OpenAI(base_url=self.config.url, api_key=self.config.api_token)
@ -70,10 +48,21 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
pass
async def list_models(self) -> List[ModelDef]:
return [
ModelDef(identifier=model.id, llama_model=model.id)
for model in self.client.models.list()
]
models = []
for model in self.client.models.list():
repo = model.id
if repo not in self.huggingface_repo_to_llama_model_id:
print(f"Unknown model served by vllm: {repo}")
continue
identifier = self.huggingface_repo_to_llama_model_id[repo]
models.append(
ModelDef(
identifier=identifier,
llama_model=identifier,
)
)
return models
async def completion(
self,
@ -118,7 +107,7 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
) -> ChatCompletionResponse:
params = self._get_params(request)
r = client.completions.create(**params)
return process_chat_completion_response(request, r, self.formatter)
return process_chat_completion_response(r, self.formatter)
async def _stream_chat_completion(
self, request: ChatCompletionRequest, client: OpenAI
@ -139,11 +128,19 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
yield chunk
def _get_params(self, request: ChatCompletionRequest) -> dict:
options = get_sampling_options(request.sampling_params)
if "max_tokens" not in options:
options["max_tokens"] = self.config.max_tokens
model = resolve_model(request.model)
if model is None:
raise ValueError(f"Unknown model: {request.model}")
return {
"model": VLLM_SUPPORTED_MODELS[request.model],
"model": model.huggingface_repo,
"prompt": chat_completion_request_to_prompt(request, self.formatter),
"stream": request.stream,
**get_sampling_options(request.sampling_params),
**options,
}
async def embeddings(