forked from phoenix-oss/llama-stack-mirror
Enable remote::vllm (#384)
* Enable remote::vllm * Kill the giant list of hard coded models
This commit is contained in:
parent
093c9f1987
commit
b10e9f46bb
5 changed files with 80 additions and 53 deletions
|
@ -8,6 +8,7 @@ from typing import AsyncGenerator
|
|||
from llama_models.llama3.api.chat_format import ChatFormat
|
||||
from llama_models.llama3.api.datatypes import Message
|
||||
from llama_models.llama3.api.tokenizer import Tokenizer
|
||||
from llama_models.sku_list import all_registered_models, resolve_model
|
||||
|
||||
from openai import OpenAI
|
||||
|
||||
|
@ -23,42 +24,19 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
|
|||
chat_completion_request_to_prompt,
|
||||
)
|
||||
|
||||
from .config import VLLMImplConfig
|
||||
|
||||
VLLM_SUPPORTED_MODELS = {
|
||||
"Llama3.1-8B": "meta-llama/Llama-3.1-8B",
|
||||
"Llama3.1-70B": "meta-llama/Llama-3.1-70B",
|
||||
"Llama3.1-405B:bf16-mp8": "meta-llama/Llama-3.1-405B",
|
||||
"Llama3.1-405B": "meta-llama/Llama-3.1-405B-FP8",
|
||||
"Llama3.1-405B:bf16-mp16": "meta-llama/Llama-3.1-405B",
|
||||
"Llama3.1-8B-Instruct": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"Llama3.1-70B-Instruct": "meta-llama/Llama-3.1-70B-Instruct",
|
||||
"Llama3.1-405B-Instruct:bf16-mp8": "meta-llama/Llama-3.1-405B-Instruct",
|
||||
"Llama3.1-405B-Instruct": "meta-llama/Llama-3.1-405B-Instruct-FP8",
|
||||
"Llama3.1-405B-Instruct:bf16-mp16": "meta-llama/Llama-3.1-405B-Instruct",
|
||||
"Llama3.2-1B": "meta-llama/Llama-3.2-1B",
|
||||
"Llama3.2-3B": "meta-llama/Llama-3.2-3B",
|
||||
"Llama3.2-11B-Vision": "meta-llama/Llama-3.2-11B-Vision",
|
||||
"Llama3.2-90B-Vision": "meta-llama/Llama-3.2-90B-Vision",
|
||||
"Llama3.2-1B-Instruct": "meta-llama/Llama-3.2-1B-Instruct",
|
||||
"Llama3.2-3B-Instruct": "meta-llama/Llama-3.2-3B-Instruct",
|
||||
"Llama3.2-11B-Vision-Instruct": "meta-llama/Llama-3.2-11B-Vision-Instruct",
|
||||
"Llama3.2-90B-Vision-Instruct": "meta-llama/Llama-3.2-90B-Vision-Instruct",
|
||||
"Llama-Guard-3-11B-Vision": "meta-llama/Llama-Guard-3-11B-Vision",
|
||||
"Llama-Guard-3-1B:int4-mp1": "meta-llama/Llama-Guard-3-1B-INT4",
|
||||
"Llama-Guard-3-1B": "meta-llama/Llama-Guard-3-1B",
|
||||
"Llama-Guard-3-8B": "meta-llama/Llama-Guard-3-8B",
|
||||
"Llama-Guard-3-8B:int8-mp1": "meta-llama/Llama-Guard-3-8B-INT8",
|
||||
"Prompt-Guard-86M": "meta-llama/Prompt-Guard-86M",
|
||||
"Llama-Guard-2-8B": "meta-llama/Llama-Guard-2-8B",
|
||||
}
|
||||
from .config import VLLMInferenceAdapterConfig
|
||||
|
||||
|
||||
class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
|
||||
def __init__(self, config: VLLMImplConfig) -> None:
|
||||
def __init__(self, config: VLLMInferenceAdapterConfig) -> None:
|
||||
self.config = config
|
||||
self.formatter = ChatFormat(Tokenizer.get_instance())
|
||||
self.client = None
|
||||
self.huggingface_repo_to_llama_model_id = {
|
||||
model.huggingface_repo: model.descriptor()
|
||||
for model in all_registered_models()
|
||||
if model.huggingface_repo
|
||||
}
|
||||
|
||||
async def initialize(self) -> None:
|
||||
self.client = OpenAI(base_url=self.config.url, api_key=self.config.api_token)
|
||||
|
@ -70,10 +48,21 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
pass
|
||||
|
||||
async def list_models(self) -> List[ModelDef]:
|
||||
return [
|
||||
ModelDef(identifier=model.id, llama_model=model.id)
|
||||
for model in self.client.models.list()
|
||||
]
|
||||
models = []
|
||||
for model in self.client.models.list():
|
||||
repo = model.id
|
||||
if repo not in self.huggingface_repo_to_llama_model_id:
|
||||
print(f"Unknown model served by vllm: {repo}")
|
||||
continue
|
||||
|
||||
identifier = self.huggingface_repo_to_llama_model_id[repo]
|
||||
models.append(
|
||||
ModelDef(
|
||||
identifier=identifier,
|
||||
llama_model=identifier,
|
||||
)
|
||||
)
|
||||
return models
|
||||
|
||||
async def completion(
|
||||
self,
|
||||
|
@ -118,7 +107,7 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
) -> ChatCompletionResponse:
|
||||
params = self._get_params(request)
|
||||
r = client.completions.create(**params)
|
||||
return process_chat_completion_response(request, r, self.formatter)
|
||||
return process_chat_completion_response(r, self.formatter)
|
||||
|
||||
async def _stream_chat_completion(
|
||||
self, request: ChatCompletionRequest, client: OpenAI
|
||||
|
@ -139,11 +128,19 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
yield chunk
|
||||
|
||||
def _get_params(self, request: ChatCompletionRequest) -> dict:
|
||||
options = get_sampling_options(request.sampling_params)
|
||||
if "max_tokens" not in options:
|
||||
options["max_tokens"] = self.config.max_tokens
|
||||
|
||||
model = resolve_model(request.model)
|
||||
if model is None:
|
||||
raise ValueError(f"Unknown model: {request.model}")
|
||||
|
||||
return {
|
||||
"model": VLLM_SUPPORTED_MODELS[request.model],
|
||||
"model": model.huggingface_repo,
|
||||
"prompt": chat_completion_request_to_prompt(request, self.formatter),
|
||||
"stream": request.stream,
|
||||
**get_sampling_options(request.sampling_params),
|
||||
**options,
|
||||
}
|
||||
|
||||
async def embeddings(
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue