forked from phoenix-oss/llama-stack-mirror
fix security update
This commit is contained in:
parent
8943b283e9
commit
b174effe05
14 changed files with 45 additions and 41 deletions
|
@ -73,8 +73,14 @@ if __name__ == "__main__":
|
|||
url=keycloak_url,
|
||||
realm=keycloak_realm,
|
||||
client_id=keycloak_client_id,
|
||||
custom_labels={
|
||||
"labelButton": "Sign in to kvant",
|
||||
"labelLogin": "Please sign in to your kvant account.",
|
||||
"errorNoPopup": "Unable to open the authentication popup. Allow popups and refresh the page to proceed.",
|
||||
"errorPopupClosed": "Authentication popup was closed manually.",
|
||||
"errorFatal": "Unable to connect to Keycloak using the current configuration."
|
||||
},
|
||||
auto_refresh=True,
|
||||
init_options={"checkLoginIframe": False},
|
||||
)
|
||||
|
||||
if keycloak.authenticated:
|
||||
|
|
|
@ -30,5 +30,3 @@ class LlamaStackApi:
|
|||
scoring_params = {fn_id: None for fn_id in scoring_function_ids}
|
||||
return self.client.scoring.score(input_rows=[row], scoring_functions=scoring_params)
|
||||
|
||||
|
||||
llama_stack_api = LlamaStackApi()
|
||||
|
|
|
@ -6,13 +6,13 @@
|
|||
|
||||
import streamlit as st
|
||||
|
||||
from llama_stack.distribution.ui.modules.api import llama_stack_api
|
||||
from llama_stack.distribution.ui.modules.api import LlamaStackApi
|
||||
|
||||
|
||||
def datasets():
|
||||
st.header("Datasets")
|
||||
|
||||
datasets_info = {d.identifier: d.to_dict() for d in llama_stack_api.client.datasets.list()}
|
||||
datasets_info = {d.identifier: d.to_dict() for d in LlamaStackApi().client.datasets.list()}
|
||||
if len(datasets_info) > 0:
|
||||
selected_dataset = st.selectbox("Select a dataset", list(datasets_info.keys()))
|
||||
st.json(datasets_info[selected_dataset], expanded=True)
|
||||
|
|
|
@ -6,14 +6,14 @@
|
|||
|
||||
import streamlit as st
|
||||
|
||||
from llama_stack.distribution.ui.modules.api import llama_stack_api
|
||||
from llama_stack.distribution.ui.modules.api import LlamaStackApi
|
||||
|
||||
|
||||
def benchmarks():
|
||||
# Benchmarks Section
|
||||
st.header("Benchmarks")
|
||||
|
||||
benchmarks_info = {d.identifier: d.to_dict() for d in llama_stack_api.client.benchmarks.list()}
|
||||
benchmarks_info = {d.identifier: d.to_dict() for d in LlamaStackApi().client.benchmarks.list()}
|
||||
|
||||
if len(benchmarks_info) > 0:
|
||||
selected_benchmark = st.selectbox("Select an eval task", list(benchmarks_info.keys()), key="benchmark_inspect")
|
||||
|
|
|
@ -6,13 +6,13 @@
|
|||
|
||||
import streamlit as st
|
||||
|
||||
from llama_stack.distribution.ui.modules.api import llama_stack_api
|
||||
from llama_stack.distribution.ui.modules.api import LlamaStackApi
|
||||
|
||||
|
||||
def models():
|
||||
# Models Section
|
||||
st.header("Models")
|
||||
models_info = {m.identifier: m.to_dict() for m in llama_stack_api.client.models.list()}
|
||||
models_info = {m.identifier: m.to_dict() for m in LlamaStackApi().client.models.list()}
|
||||
|
||||
selected_model = st.selectbox("Select a model", list(models_info.keys()))
|
||||
st.json(models_info[selected_model])
|
||||
|
|
|
@ -6,12 +6,12 @@
|
|||
|
||||
import streamlit as st
|
||||
|
||||
from llama_stack.distribution.ui.modules.api import llama_stack_api
|
||||
from llama_stack.distribution.ui.modules.api import LlamaStackApi
|
||||
|
||||
|
||||
def providers():
|
||||
st.header("🔍 API Providers")
|
||||
apis_providers_lst = llama_stack_api.client.providers.list()
|
||||
apis_providers_lst = LlamaStackApi().client.providers.list()
|
||||
api_to_providers = {}
|
||||
for api_provider in apis_providers_lst:
|
||||
if api_provider.api in api_to_providers:
|
||||
|
|
|
@ -6,13 +6,13 @@
|
|||
|
||||
import streamlit as st
|
||||
|
||||
from llama_stack.distribution.ui.modules.api import llama_stack_api
|
||||
from llama_stack.distribution.ui.modules.api import LlamaStackApi
|
||||
|
||||
|
||||
def scoring_functions():
|
||||
st.header("Scoring Functions")
|
||||
|
||||
scoring_functions_info = {s.identifier: s.to_dict() for s in llama_stack_api.client.scoring_functions.list()}
|
||||
scoring_functions_info = {s.identifier: s.to_dict() for s in LlamaStackApi().client.scoring_functions.list()}
|
||||
|
||||
selected_scoring_function = st.selectbox("Select a scoring function", list(scoring_functions_info.keys()))
|
||||
st.json(scoring_functions_info[selected_scoring_function], expanded=True)
|
||||
|
|
|
@ -6,14 +6,14 @@
|
|||
|
||||
import streamlit as st
|
||||
|
||||
from llama_stack.distribution.ui.modules.api import llama_stack_api
|
||||
from llama_stack.distribution.ui.modules.api import LlamaStackApi
|
||||
|
||||
|
||||
def shields():
|
||||
# Shields Section
|
||||
st.header("Shields")
|
||||
|
||||
shields_info = {s.identifier: s.to_dict() for s in llama_stack_api.client.shields.list()}
|
||||
shields_info = {s.identifier: s.to_dict() for s in LlamaStackApi().client.shields.list()}
|
||||
|
||||
selected_shield = st.selectbox("Select a shield", list(shields_info.keys()))
|
||||
st.json(shields_info[selected_shield])
|
||||
|
|
|
@ -6,12 +6,12 @@
|
|||
|
||||
import streamlit as st
|
||||
|
||||
from llama_stack.distribution.ui.modules.api import llama_stack_api
|
||||
from llama_stack.distribution.ui.modules.api import LlamaStackApi
|
||||
|
||||
|
||||
def vector_dbs():
|
||||
st.header("Vector Databases")
|
||||
vector_dbs_info = {v.identifier: v.to_dict() for v in llama_stack_api.client.vector_dbs.list()}
|
||||
vector_dbs_info = {v.identifier: v.to_dict() for v in LlamaStackApi().client.vector_dbs.list()}
|
||||
|
||||
if len(vector_dbs_info) > 0:
|
||||
selected_vector_db = st.selectbox("Select a vector database", list(vector_dbs_info.keys()))
|
||||
|
|
|
@ -9,7 +9,7 @@ import json
|
|||
import pandas as pd
|
||||
import streamlit as st
|
||||
|
||||
from llama_stack.distribution.ui.modules.api import llama_stack_api
|
||||
from llama_stack.distribution.ui.modules.api import LlamaStackApi
|
||||
from llama_stack.distribution.ui.modules.utils import process_dataset
|
||||
|
||||
|
||||
|
@ -39,7 +39,7 @@ def application_evaluation_page():
|
|||
|
||||
# Select Scoring Functions to Run Evaluation On
|
||||
st.subheader("Select Scoring Functions")
|
||||
scoring_functions = llama_stack_api.client.scoring_functions.list()
|
||||
scoring_functions = LlamaStackApi().client.scoring_functions.list()
|
||||
scoring_functions = {sf.identifier: sf for sf in scoring_functions}
|
||||
scoring_functions_names = list(scoring_functions.keys())
|
||||
selected_scoring_functions = st.multiselect(
|
||||
|
@ -48,7 +48,7 @@ def application_evaluation_page():
|
|||
help="Choose one or more scoring functions.",
|
||||
)
|
||||
|
||||
available_models = llama_stack_api.client.models.list()
|
||||
available_models = LlamaStackApi().client.models.list()
|
||||
available_models = [m.identifier for m in available_models]
|
||||
|
||||
scoring_params = {}
|
||||
|
@ -108,7 +108,7 @@ def application_evaluation_page():
|
|||
progress_bar.progress(progress, text=progress_text)
|
||||
|
||||
# Run evaluation for current row
|
||||
score_res = llama_stack_api.run_scoring(
|
||||
score_res = LlamaStackApi().run_scoring(
|
||||
r,
|
||||
scoring_function_ids=selected_scoring_functions,
|
||||
scoring_params=scoring_params,
|
||||
|
|
|
@ -9,13 +9,13 @@ import json
|
|||
import pandas as pd
|
||||
import streamlit as st
|
||||
|
||||
from llama_stack.distribution.ui.modules.api import llama_stack_api
|
||||
from llama_stack.distribution.ui.modules.api import LlamaStackApi
|
||||
|
||||
|
||||
def select_benchmark_1():
|
||||
# Select Benchmarks
|
||||
st.subheader("1. Choose An Eval Task")
|
||||
benchmarks = llama_stack_api.client.benchmarks.list()
|
||||
benchmarks = LlamaStackApi().client.benchmarks.list()
|
||||
benchmarks = {et.identifier: et for et in benchmarks}
|
||||
benchmarks_names = list(benchmarks.keys())
|
||||
selected_benchmark = st.selectbox(
|
||||
|
@ -47,7 +47,7 @@ def define_eval_candidate_2():
|
|||
# Define Eval Candidate
|
||||
candidate_type = st.radio("Candidate Type", ["model", "agent"])
|
||||
|
||||
available_models = llama_stack_api.client.models.list()
|
||||
available_models = LlamaStackApi().client.models.list()
|
||||
available_models = [model.identifier for model in available_models]
|
||||
selected_model = st.selectbox(
|
||||
"Choose a model",
|
||||
|
@ -167,7 +167,7 @@ def run_evaluation_3():
|
|||
eval_candidate = st.session_state["eval_candidate"]
|
||||
|
||||
dataset_id = benchmarks[selected_benchmark].dataset_id
|
||||
rows = llama_stack_api.client.datasets.iterrows(
|
||||
rows = LlamaStackApi().client.datasets.iterrows(
|
||||
dataset_id=dataset_id,
|
||||
)
|
||||
total_rows = len(rows.data)
|
||||
|
@ -208,7 +208,7 @@ def run_evaluation_3():
|
|||
progress = i / len(rows)
|
||||
progress_bar.progress(progress, text=progress_text)
|
||||
# Run evaluation for current row
|
||||
eval_res = llama_stack_api.client.eval.evaluate_rows(
|
||||
eval_res = LlamaStackApi().client.eval.evaluate_rows(
|
||||
benchmark_id=selected_benchmark,
|
||||
input_rows=[r],
|
||||
scoring_functions=benchmarks[selected_benchmark].scoring_functions,
|
||||
|
|
|
@ -6,12 +6,12 @@
|
|||
|
||||
import streamlit as st
|
||||
|
||||
from llama_stack.distribution.ui.modules.api import llama_stack_api
|
||||
from llama_stack.distribution.ui.modules.api import LlamaStackApi
|
||||
|
||||
# Sidebar configurations
|
||||
with st.sidebar:
|
||||
st.header("Configuration")
|
||||
available_models = llama_stack_api.client.models.list()
|
||||
available_models = LlamaStackApi().client.models.list()
|
||||
available_models = [model.identifier for model in available_models if model.model_type == "llm"]
|
||||
selected_model = st.selectbox(
|
||||
"Choose a model",
|
||||
|
@ -103,7 +103,7 @@ if prompt := st.chat_input("Example: What is Llama Stack?"):
|
|||
else:
|
||||
strategy = {"type": "greedy"}
|
||||
|
||||
response = llama_stack_api.client.inference.chat_completion(
|
||||
response = LlamaStackApi().client.inference.chat_completion(
|
||||
messages=[
|
||||
{"role": "system", "content": system_prompt},
|
||||
{"role": "user", "content": prompt},
|
||||
|
|
|
@ -10,7 +10,7 @@ import streamlit as st
|
|||
from llama_stack_client import Agent, AgentEventLogger, RAGDocument
|
||||
|
||||
from llama_stack.apis.common.content_types import ToolCallDelta
|
||||
from llama_stack.distribution.ui.modules.api import llama_stack_api
|
||||
from llama_stack.distribution.ui.modules.api import LlamaStackApi
|
||||
from llama_stack.distribution.ui.modules.utils import data_url_from_file
|
||||
|
||||
|
||||
|
@ -57,14 +57,14 @@ def rag_chat_page():
|
|||
for i, uploaded_file in enumerate(uploaded_files)
|
||||
]
|
||||
|
||||
providers = llama_stack_api.client.providers.list()
|
||||
providers = LlamaStackApi().client.providers.list()
|
||||
vector_io_provider = None
|
||||
|
||||
for x in providers:
|
||||
if x.api == "vector_io":
|
||||
vector_io_provider = x.provider_id
|
||||
|
||||
llama_stack_api.client.vector_dbs.register(
|
||||
LlamaStackApi().client.vector_dbs.register(
|
||||
vector_db_id=vector_db_name, # Use the user-provided name
|
||||
embedding_dimension=384,
|
||||
embedding_model="all-MiniLM-L6-v2",
|
||||
|
@ -72,7 +72,7 @@ def rag_chat_page():
|
|||
)
|
||||
|
||||
# insert documents using the custom vector db name
|
||||
llama_stack_api.client.tool_runtime.rag_tool.insert(
|
||||
LlamaStackApi().client.tool_runtime.rag_tool.insert(
|
||||
vector_db_id=vector_db_name, # Use the user-provided name
|
||||
documents=documents,
|
||||
chunk_size_in_tokens=512,
|
||||
|
@ -93,7 +93,7 @@ def rag_chat_page():
|
|||
)
|
||||
|
||||
# select memory banks
|
||||
vector_dbs = llama_stack_api.client.vector_dbs.list()
|
||||
vector_dbs = LlamaStackApi().client.vector_dbs.list()
|
||||
vector_dbs = [vector_db.identifier for vector_db in vector_dbs]
|
||||
selected_vector_dbs = st.multiselect(
|
||||
label="Select Document Collections to use in RAG queries",
|
||||
|
@ -103,7 +103,7 @@ def rag_chat_page():
|
|||
)
|
||||
|
||||
st.subheader("Inference Parameters", divider=True)
|
||||
available_models = llama_stack_api.client.models.list()
|
||||
available_models = LlamaStackApi().client.models.list()
|
||||
available_models = [model.identifier for model in available_models if model.model_type == "llm"]
|
||||
selected_model = st.selectbox(
|
||||
label="Choose a model",
|
||||
|
@ -167,7 +167,7 @@ def rag_chat_page():
|
|||
@st.cache_resource
|
||||
def create_agent():
|
||||
return Agent(
|
||||
llama_stack_api.client,
|
||||
LlamaStackApi().client,
|
||||
model=selected_model,
|
||||
instructions=system_prompt,
|
||||
sampling_params={
|
||||
|
@ -232,7 +232,7 @@ def rag_chat_page():
|
|||
st.session_state.messages.append({"role": "system", "content": system_prompt})
|
||||
|
||||
# Query the vector DB
|
||||
rag_response = llama_stack_api.client.tool_runtime.rag_tool.query(
|
||||
rag_response = LlamaStackApi().client.tool_runtime.rag_tool.query(
|
||||
content=prompt, vector_db_ids=list(selected_vector_dbs)
|
||||
)
|
||||
prompt_context = rag_response.content
|
||||
|
@ -251,7 +251,7 @@ def rag_chat_page():
|
|||
|
||||
# Run inference directly
|
||||
st.session_state.messages.append({"role": "user", "content": extended_prompt})
|
||||
response = llama_stack_api.client.inference.chat_completion(
|
||||
response = LlamaStackApi().client.inference.chat_completion(
|
||||
messages=st.session_state.messages,
|
||||
model_id=selected_model,
|
||||
sampling_params={
|
||||
|
|
|
@ -13,7 +13,7 @@ from llama_stack_client import Agent
|
|||
from llama_stack_client.lib.agents.react.agent import ReActAgent
|
||||
from llama_stack_client.lib.agents.react.tool_parser import ReActOutput
|
||||
|
||||
from llama_stack.distribution.ui.modules.api import llama_stack_api
|
||||
from llama_stack.distribution.ui.modules.api import LlamaStackApi
|
||||
|
||||
|
||||
class AgentType(enum.Enum):
|
||||
|
@ -24,7 +24,7 @@ class AgentType(enum.Enum):
|
|||
def tool_chat_page():
|
||||
st.title("🛠 Tools")
|
||||
|
||||
client = llama_stack_api.client
|
||||
client = LlamaStackApi().client
|
||||
models = client.models.list()
|
||||
model_list = [model.identifier for model in models if model.api_model_type == "llm"]
|
||||
|
||||
|
@ -55,7 +55,7 @@ def tool_chat_page():
|
|||
)
|
||||
|
||||
if "builtin::rag" in toolgroup_selection:
|
||||
vector_dbs = llama_stack_api.client.vector_dbs.list() or []
|
||||
vector_dbs = LlamaStackApi().client.vector_dbs.list() or []
|
||||
if not vector_dbs:
|
||||
st.info("No vector databases available for selection.")
|
||||
vector_dbs = [vector_db.identifier for vector_db in vector_dbs]
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue