forked from phoenix-oss/llama-stack-mirror
feat: introduce llama4 support (#1877)
As title says. Details in README, elsewhere.
This commit is contained in:
parent
23a99a4b22
commit
b8f1561956
61 changed files with 205222 additions and 6439 deletions
|
@ -0,0 +1,270 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import math
|
||||
from typing import Generator, List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
from lmformatenforcer import JsonSchemaParser, TokenEnforcer, TokenEnforcerTokenizerData
|
||||
|
||||
from llama_stack.apis.inference import (
|
||||
Fp8QuantizationConfig,
|
||||
Int4QuantizationConfig,
|
||||
JsonSchemaResponseFormat,
|
||||
ResponseFormat,
|
||||
)
|
||||
from llama_stack.models.llama.datatypes import (
|
||||
GreedySamplingStrategy,
|
||||
Model,
|
||||
SamplingParams,
|
||||
TopPSamplingStrategy,
|
||||
)
|
||||
from llama_stack.models.llama.llama3.tokenizer import Tokenizer as Llama3Tokenizer
|
||||
from llama_stack.models.llama.llama4.tokenizer import Tokenizer as Llama4Tokenizer
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
ChatCompletionRequestWithRawContent,
|
||||
CompletionRequestWithRawContent,
|
||||
get_default_tool_prompt_format,
|
||||
)
|
||||
|
||||
from .common import model_checkpoint_dir
|
||||
from .config import MetaReferenceInferenceConfig, MetaReferenceQuantizedInferenceConfig
|
||||
from .inference import resolve_model
|
||||
from .llama3.generation import Llama3
|
||||
from .llama4.generation import Llama4
|
||||
|
||||
Tokenizer = Llama4Tokenizer | Llama3Tokenizer
|
||||
|
||||
|
||||
class LogitsProcessor:
|
||||
def __init__(self, token_enforcer: TokenEnforcer):
|
||||
self.token_enforcer = token_enforcer
|
||||
self.mask: Optional[torch.Tensor] = None
|
||||
|
||||
def __call__(self, tokens: torch.Tensor, scores: torch.Tensor) -> torch.Tensor:
|
||||
token_sequence = tokens[0, :].tolist()
|
||||
allowed_tokens = self.token_enforcer.get_allowed_tokens(token_sequence)
|
||||
|
||||
if self.mask is not None:
|
||||
self.mask.fill_(-math.inf)
|
||||
else:
|
||||
self.mask = torch.full_like(scores, -math.inf)
|
||||
|
||||
self.mask[:, :, allowed_tokens] = 0
|
||||
scores = scores + self.mask
|
||||
return scores
|
||||
|
||||
|
||||
def get_logits_processor(
|
||||
tokenizer: Tokenizer,
|
||||
vocab_size: int,
|
||||
response_format: Optional[ResponseFormat],
|
||||
) -> Optional["LogitsProcessor"]:
|
||||
if response_format is None:
|
||||
return None
|
||||
|
||||
if not isinstance(response_format, JsonSchemaResponseFormat):
|
||||
raise ValueError(f"Unsupported response format type {response_format.type}")
|
||||
|
||||
parser = JsonSchemaParser(response_format.json_schema)
|
||||
data = TokenEnforcerTokenizerData(
|
||||
_build_regular_tokens_list(tokenizer, vocab_size),
|
||||
tokenizer.decode,
|
||||
tokenizer.stop_tokens,
|
||||
)
|
||||
token_enforcer = TokenEnforcer(data, parser)
|
||||
return LogitsProcessor(token_enforcer)
|
||||
|
||||
|
||||
def _build_regular_tokens_list(tokenizer: Tokenizer, vocab_size: int) -> List[Tuple[int, str, bool]]:
|
||||
token_0 = tokenizer.encode("0", bos=False, eos=False)[-1]
|
||||
regular_tokens = []
|
||||
|
||||
special_token_ids = set(tokenizer.special_tokens.values())
|
||||
for token_idx in range(vocab_size):
|
||||
if token_idx in special_token_ids:
|
||||
continue
|
||||
|
||||
# We prepend token 0 and skip the first letter of the result to get a space if the token is a start word.
|
||||
decoded_after_0 = tokenizer.decode([token_0, token_idx])[1:]
|
||||
decoded_regular = tokenizer.decode([token_idx])
|
||||
is_word_start_token = len(decoded_after_0) > len(decoded_regular)
|
||||
regular_tokens.append((token_idx, decoded_after_0, is_word_start_token))
|
||||
return regular_tokens
|
||||
|
||||
|
||||
def _infer_sampling_params(sampling_params: SamplingParams):
|
||||
if isinstance(sampling_params.strategy, GreedySamplingStrategy):
|
||||
temperature = 0.0
|
||||
top_p = 1.0
|
||||
elif isinstance(sampling_params.strategy, TopPSamplingStrategy):
|
||||
temperature = sampling_params.strategy.temperature or 1.0
|
||||
top_p = sampling_params.strategy.top_p or 1.0
|
||||
else:
|
||||
raise ValueError(f"Unsupported sampling strategy {sampling_params.strategy}")
|
||||
return temperature, top_p
|
||||
|
||||
|
||||
def _infer_tool_prompt_format(request: ChatCompletionRequestWithRawContent):
|
||||
tool_config = request.tool_config
|
||||
if tool_config is not None and tool_config.tool_prompt_format is not None:
|
||||
return tool_config.tool_prompt_format
|
||||
else:
|
||||
return get_default_tool_prompt_format(request.model)
|
||||
|
||||
|
||||
class Llama4Generator:
|
||||
def __init__(
|
||||
self,
|
||||
config: MetaReferenceInferenceConfig | MetaReferenceQuantizedInferenceConfig,
|
||||
model_id: str,
|
||||
llama_model: Model,
|
||||
):
|
||||
if config.checkpoint_dir and config.checkpoint_dir != "null":
|
||||
ckpt_dir = config.checkpoint_dir
|
||||
else:
|
||||
resolved_model = resolve_model(model_id)
|
||||
if resolved_model is None:
|
||||
# if the model is not a native llama model, get the default checkpoint_dir based on model id
|
||||
ckpt_dir = model_checkpoint_dir(model_id)
|
||||
else:
|
||||
# if the model is a native llama model, get the default checkpoint_dir based on model core_model_id value
|
||||
ckpt_dir = model_checkpoint_dir(resolved_model.descriptor())
|
||||
|
||||
if isinstance(config, MetaReferenceQuantizedInferenceConfig):
|
||||
if isinstance(config.quantization, Fp8QuantizationConfig):
|
||||
quantization_mode = "fp8_mixed"
|
||||
elif isinstance(config.quantization, Int4QuantizationConfig):
|
||||
quantization_mode = "int4_mixed"
|
||||
else:
|
||||
raise ValueError(f"Unsupported quantization mode {config.quantization}")
|
||||
else:
|
||||
quantization_mode = None
|
||||
|
||||
self.inner_generator = Llama4.build(
|
||||
ckpt_dir=ckpt_dir,
|
||||
max_seq_len=config.max_seq_len,
|
||||
max_batch_size=config.max_batch_size,
|
||||
world_size=llama_model.pth_file_count,
|
||||
quantization_mode=quantization_mode,
|
||||
)
|
||||
|
||||
self.tokenizer = self.inner_generator.tokenizer
|
||||
self.args = self.inner_generator.args
|
||||
self.formatter = self.inner_generator.formatter
|
||||
|
||||
def completion(
|
||||
self,
|
||||
request: CompletionRequestWithRawContent,
|
||||
) -> Generator:
|
||||
sampling_params = request.sampling_params or SamplingParams()
|
||||
max_gen_len = sampling_params.max_tokens
|
||||
if max_gen_len is None or max_gen_len == 0 or max_gen_len >= self.args.max_seq_len:
|
||||
max_gen_len = self.args.max_seq_len - 1
|
||||
|
||||
temperature, top_p = _infer_sampling_params(sampling_params)
|
||||
yield from self.inner_generator.generate(
|
||||
llm_input=self.formatter.encode_content(request.content),
|
||||
max_gen_len=max_gen_len,
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
logprobs=bool(request.logprobs),
|
||||
echo=False,
|
||||
logits_processor=get_logits_processor(
|
||||
self.tokenizer,
|
||||
self.args.vocab_size,
|
||||
request.response_format,
|
||||
),
|
||||
)
|
||||
|
||||
def chat_completion(
|
||||
self,
|
||||
request: ChatCompletionRequestWithRawContent,
|
||||
) -> Generator:
|
||||
sampling_params = request.sampling_params or SamplingParams()
|
||||
max_gen_len = sampling_params.max_tokens
|
||||
if max_gen_len is None or max_gen_len == 0 or max_gen_len >= self.args.max_seq_len:
|
||||
max_gen_len = self.args.max_seq_len - 1
|
||||
|
||||
temperature, top_p = _infer_sampling_params(sampling_params)
|
||||
yield from self.inner_generator.generate(
|
||||
llm_input=self.formatter.encode_dialog_prompt(request.messages, _infer_tool_prompt_format(request)),
|
||||
max_gen_len=max_gen_len,
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
logprobs=bool(request.logprobs),
|
||||
echo=False,
|
||||
logits_processor=get_logits_processor(
|
||||
self.tokenizer,
|
||||
self.args.vocab_size,
|
||||
request.response_format,
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
class Llama3Generator:
|
||||
def __init__(
|
||||
self,
|
||||
config: MetaReferenceInferenceConfig | MetaReferenceQuantizedInferenceConfig,
|
||||
model_id: str,
|
||||
llama_model: Model,
|
||||
):
|
||||
self.inner_generator = Llama3.build(
|
||||
config=config,
|
||||
model_id=model_id,
|
||||
llama_model=llama_model,
|
||||
)
|
||||
self.tokenizer = self.inner_generator.tokenizer
|
||||
self.args = self.inner_generator.args
|
||||
self.formatter = self.inner_generator.formatter
|
||||
|
||||
def completion(
|
||||
self,
|
||||
request: CompletionRequestWithRawContent,
|
||||
) -> Generator:
|
||||
sampling_params = request.sampling_params or SamplingParams()
|
||||
max_gen_len = sampling_params.max_tokens
|
||||
if max_gen_len is None or max_gen_len == 0 or max_gen_len >= self.args.max_seq_len:
|
||||
max_gen_len = self.args.max_seq_len - 1
|
||||
|
||||
temperature, top_p = _infer_sampling_params(sampling_params)
|
||||
yield from self.inner_generator.generate(
|
||||
model_input=self.formatter.encode_content(request.content),
|
||||
max_gen_len=max_gen_len,
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
logprobs=bool(request.logprobs),
|
||||
echo=False,
|
||||
logits_processor=get_logits_processor(
|
||||
self.tokenizer,
|
||||
self.args.vocab_size,
|
||||
request.response_format,
|
||||
),
|
||||
)
|
||||
|
||||
def chat_completion(
|
||||
self,
|
||||
request: ChatCompletionRequestWithRawContent,
|
||||
) -> Generator:
|
||||
sampling_params = request.sampling_params or SamplingParams()
|
||||
max_gen_len = sampling_params.max_tokens
|
||||
if max_gen_len is None or max_gen_len == 0 or max_gen_len >= self.args.max_seq_len:
|
||||
max_gen_len = self.args.max_seq_len - 1
|
||||
|
||||
temperature, top_p = _infer_sampling_params(sampling_params)
|
||||
yield from self.inner_generator.generate(
|
||||
model_input=self.formatter.encode_dialog_prompt(request.messages, _infer_tool_prompt_format(request)),
|
||||
max_gen_len=max_gen_len,
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
logprobs=bool(request.logprobs),
|
||||
echo=False,
|
||||
logits_processor=get_logits_processor(
|
||||
self.tokenizer,
|
||||
self.args.vocab_size,
|
||||
request.response_format,
|
||||
),
|
||||
)
|
Loading…
Add table
Add a link
Reference in a new issue