feat: introduce llama4 support (#1877)

As title says. Details in README, elsewhere.
This commit is contained in:
Ashwin Bharambe 2025-04-05 11:53:35 -07:00 committed by GitHub
parent 23a99a4b22
commit b8f1561956
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
61 changed files with 205222 additions and 6439 deletions

View file

@ -0,0 +1,207 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import logging
import os
from typing import Optional
import torch
from fairscale.nn.model_parallel.initialize import get_model_parallel_rank
from torch import Tensor
from torch.nn import functional as F
from ..generation import QuantizationMode
from ..model import Transformer, TransformerBlock
from ..moe import MoE
log = logging.getLogger(__name__)
def experts_batched_swiglu_wrapper(
self,
x: Tensor, # (e, g, D)
w1: Tensor, # (e, D, F)
w3: Tensor, # (e, D, F)
w2: Tensor, # (e, F, D)
) -> torch.Tensor:
from ...quantize_impls import bmm_nt
middle_out_egF = F.silu(bmm_nt(x, w1)) * bmm_nt(x, w3) # noqa: N806
return bmm_nt(middle_out_egF, w2)
def convert_to_quantized_model(
model: Transformer,
checkpoint_dir: str,
quantization_mode: Optional[str] = None,
fp8_activation_scale_ub: Optional[float] = 1200.0,
use_rich_progress: bool = True,
) -> Transformer:
from ...quantize_impls import (
Fp8ScaledWeights,
Int4ScaledWeights,
load_fp8,
load_int4,
quantize_fp8,
quantize_int4,
)
rank = get_model_parallel_rank()
use_rich_progress = use_rich_progress and rank == 0
progress, log_status, update_status = logging_callbacks(use_rich_progress, rank, model)
if quantization_mode == QuantizationMode.int4_mixed:
int4_scales_path = os.path.join(checkpoint_dir, f"int4_scales_{rank}.pt")
int4_zero_points_path = os.path.join(checkpoint_dir, f"int4_zero_points_{rank}.pt")
if os.path.isfile(int4_scales_path):
log_status(f"Rank {rank}: Loading int4 scales")
int4_scales = torch.load(int4_scales_path, weights_only=True)
int4_zero_points = torch.load(int4_zero_points_path, weights_only=True)
def apply_quantization(key, weight):
scale = int4_scales[key]
zero_point = int4_zero_points[key]
return load_int4(
weight,
scale,
zero_point,
fp8_activation_scale_ub,
output_device=torch.device("cuda"),
)
else:
log_status(f"Rank {rank}: Quantizing int4 weights from bf16")
def apply_quantization(_, weight):
return quantize_int4(weight, fp8_activation_scale_ub, output_device=torch.device("cuda"))
else:
fp8_scales_path = os.path.join(checkpoint_dir, f"fp8_scales_{rank}.pt")
if os.path.isfile(fp8_scales_path):
log_status(f"Rank {rank}: Loading fp8 scales")
fp8_scales = torch.load(fp8_scales_path, weights_only=True)
def apply_quantization(key, weight):
scale = fp8_scales[key]
return load_fp8(
weight,
scale,
fp8_activation_scale_ub,
output_device=torch.device("cuda"),
)
else:
log_status(f"Rank {rank}: Quantizing fp8 weights from bf16")
def apply_quantization(_, weight):
return quantize_fp8(weight, fp8_activation_scale_ub, output_device=torch.device("cuda"))
processed_blocks = 0
try:
if use_rich_progress:
progress.start()
for _, block in model.named_modules():
if isinstance(block, TransformerBlock):
# Skip quantization on first and last layers
if block.layer_id == 0 or block.layer_id == (model.n_layers - 1):
continue
# Skip quantization on dense layers
if not isinstance(block.feed_forward, MoE):
continue
update_status(f"Rank {rank} - Layer {block.layer_id}")
# Quantize only routed experts, not shared
prefix = f"layers.{block.layer_id}.feed_forward"
moe = block.feed_forward
moe.experts.batched_swiglu = experts_batched_swiglu_wrapper.__get__(moe.experts)
for key in ("w1", "w3", "w2"):
param = getattr(moe.experts, key)
update_status(f"Rank {rank} - Layer {block.layer_id} - MoE {key}")
setattr(
moe.experts,
key,
apply_quantization(f"{prefix}.experts.{key}", param.transpose(1, 2).contiguous()),
)
processed_blocks += 1
update_status(message=None, completed=processed_blocks)
update_status(f"Rank {rank} - Moving parameters to CUDA")
param_count = 0
for _, parameter in model.named_parameters():
if not isinstance(parameter, Fp8ScaledWeights) and not isinstance(parameter, Int4ScaledWeights):
parameter.data = parameter.to(device="cuda")
param_count += 1
update_status(f"Rank {rank} - Completed - moved {param_count} parameters to CUDA")
finally:
if use_rich_progress:
progress.stop()
return model
# fp8/int4 loading can be very slow so we add progress bars to make life slightly better
def logging_callbacks(use_rich_progress: bool, rank: int, model: Transformer):
console = None
if use_rich_progress:
from rich.console import Console
console = Console(highlight=False)
def log_status(message: str) -> None:
if use_rich_progress:
console.print(message)
elif rank == 0: # Only log from rank 0 for non-rich logging
log.info(message)
total_blocks = sum(
1
for _, block in model.named_modules()
if (
isinstance(block, TransformerBlock)
and not (block.layer_id == 0 or block.layer_id == (model.n_layers - 1))
and isinstance(block.feed_forward, MoE)
)
)
progress = None
if use_rich_progress:
from rich.progress import (
BarColumn,
Progress,
SpinnerColumn,
TextColumn,
TimeElapsedColumn,
TimeRemainingColumn,
)
progress = Progress(
SpinnerColumn(),
BarColumn(complete_style="green", finished_style="bright_green"),
TextColumn("[progress.percentage]{task.percentage:>3.0f}%"),
TimeElapsedColumn(),
TextColumn("ETA:"),
TimeRemainingColumn(),
TextColumn("[bold]{task.fields[status]}"),
console=console,
expand=True,
)
task_id = progress.add_task("[blue]Converting layers...", total=total_blocks, status="Starting")
def update_status(message: Optional[str], completed: Optional[int] = None) -> None:
if use_rich_progress:
if message is not None:
progress.update(task_id, status=message)
if completed is not None:
progress.update(task_id, completed=completed)
elif rank == 0 and completed and completed % 10 == 0:
log.info(f"Rank {rank}: {completed}/{total_blocks} blocks completed")
return progress, log_status, update_status