feat: remove special handling of builtin::rag tool (#1015)

Summary:

Lets the model decide which tool it needs to call to respond to a query.

Test Plan:
```
LLAMA_STACK_CONFIG=fireworks pytest -s -v tests/client-sdk/ --safety-shield meta-llama/Llama-Guard-3-8B
```

Also evaluated on a small benchmark with 20 questions from HotpotQA.
With this PR and some prompting, the performance is 77% recall compared
to 50% currently.

---
[//]: # (BEGIN SAPLING FOOTER)
Stack created with [Sapling](https://sapling-scm.com). Best reviewed
with
[ReviewStack](https://reviewstack.dev/meta-llama/llama-stack/pull/1015).
* #1268
* #1239
* __->__ #1015
This commit is contained in:
ehhuang 2025-02-26 13:04:52 -08:00 committed by GitHub
parent c64f0d5888
commit bb2690f176
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
4 changed files with 94 additions and 133 deletions

View file

@ -10,6 +10,8 @@ import secrets
import string
from typing import Any, Dict, List, Optional
from pydantic import TypeAdapter
from llama_stack.apis.common.content_types import (
URL,
InterleavedContent,
@ -23,6 +25,7 @@ from llama_stack.apis.tools import (
RAGToolRuntime,
ToolDef,
ToolInvocationResult,
ToolParameter,
ToolRuntime,
)
from llama_stack.apis.vector_io import QueryChunksResponse, VectorIO
@ -120,9 +123,14 @@ class MemoryToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime, RAGToolRuntime):
# sort by score
chunks, scores = zip(*sorted(zip(chunks, scores, strict=False), key=lambda x: x[1], reverse=True), strict=False)
chunks = chunks[: query_config.max_chunks]
tokens = 0
picked = []
for c in chunks:
picked = [
TextContentItem(
text=f"knowledge_search tool found {len(chunks)} chunks:\nBEGIN of knowledge_search tool results.\n"
)
]
for i, c in enumerate(chunks):
metadata = c.metadata
tokens += metadata["token_count"]
if tokens > query_config.max_tokens_in_context:
@ -132,20 +140,13 @@ class MemoryToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime, RAGToolRuntime):
break
picked.append(
TextContentItem(
text=f"id:{metadata['document_id']}; content:{c.content}",
text=f"Result {i + 1}:\nDocument_id:{metadata['document_id'][:5]}\nContent: {c.content}\n",
)
)
picked.append(TextContentItem(text="END of knowledge_search tool results.\n"))
return RAGQueryResult(
content=[
TextContentItem(
text="Here are the retrieved documents for relevant context:\n=== START-RETRIEVED-CONTEXT ===\n",
),
*picked,
TextContentItem(
text="\n=== END-RETRIEVED-CONTEXT ===\n",
),
],
content=picked,
metadata={
"document_ids": [c.metadata["document_id"] for c in chunks[: len(picked)]],
},
@ -158,17 +159,40 @@ class MemoryToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime, RAGToolRuntime):
# by the LLM. The method is only implemented so things like /tools can list without
# encountering fatals.
return [
ToolDef(
name="query_from_memory",
description="Retrieve context from memory",
),
ToolDef(
name="insert_into_memory",
description="Insert documents into memory",
),
ToolDef(
name="knowledge_search",
description="Search for information in a database.",
parameters=[
ToolParameter(
name="query",
description="The query to search for. Can be a natural language sentence or keywords.",
parameter_type="string",
),
],
),
]
async def invoke_tool(self, tool_name: str, kwargs: Dict[str, Any]) -> ToolInvocationResult:
raise RuntimeError(
"This toolgroup should not be called generically but only through specific methods of the RAGToolRuntime protocol"
vector_db_ids = kwargs.get("vector_db_ids", [])
query_config = kwargs.get("query_config")
if query_config:
query_config = TypeAdapter(RAGQueryConfig).validate_python(query_config)
else:
# handle someone passing an empty dict
query_config = RAGQueryConfig()
query = kwargs["query"]
result = await self.query(
content=query,
vector_db_ids=vector_db_ids,
query_config=query_config,
)
return ToolInvocationResult(
content=result.content,
metadata=result.metadata,
)