test: revamp eval related integration tests (#1433)

# What does this PR do?
- revamp and clean up datasets/scoring/eval integration tests
- closes https://github.com/meta-llama/llama-stack/issues/1396

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
**dataset**
```
LLAMA_STACK_BASE_URL=http://localhost:8321 pytest -v tests/integration/datasetio/
```
<img width="842" alt="image"
src="https://github.com/user-attachments/assets/88fc2b6a-b496-47bf-bc0c-8fea48ba36ff"
/>

**scoring**
```
LLAMA_STACK_CONFIG=fireworks pytest -v tests/integration/scoring --text-model meta-llama/Llama-3.1-8B-Instruct --judge-model meta-llama/Llama-3.1-8B-Instruct
```
<img width="851" alt="image"
src="https://github.com/user-attachments/assets/50f46415-b44c-4c37-a6c3-076f2767adb3"
/>


**eval**
```
LLAMA_STACK_CONFIG=fireworks pytest -v tests/integration/eval --text-model meta-llama/Llama-3.1-8B-Instruct --judge-model meta-llama/Llama-3.1-8B-Instruct
```
<img width="841" alt="image"
src="https://github.com/user-attachments/assets/8eb1c65c-3b39-4d66-8ff4-f471ca783e49"
/>


[//]: # (## Documentation)
This commit is contained in:
Xi Yan 2025-03-06 10:51:35 -08:00 committed by GitHub
parent 82e94fe22f
commit bcb13c492f
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
7 changed files with 184 additions and 222 deletions

View file

@ -3,181 +3,87 @@
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import uuid
import pytest
from llama_stack.apis.common.content_types import URL
from llama_stack.apis.common.type_system import ChatCompletionInputType, StringType
from llama_stack.apis.eval.eval import (
ModelCandidate,
)
from llama_stack.apis.inference import SamplingParams
from llama_stack.apis.scoring_functions import LLMAsJudgeScoringFnParams
from llama_stack.distribution.datatypes import Api
from ..datasetio.test_datasetio import register_dataset
from .constants import JUDGE_PROMPT
# How to run this test:
#
# pytest llama_stack/providers/tests/eval/test_eval.py
# -m "meta_reference_eval_together_inference_huggingface_datasetio"
# -v -s --tb=short --disable-warnings
# LLAMA_STACK_CONFIG="template-name" pytest -v tests/integration/eval
@pytest.mark.skip(reason="FIXME FIXME @yanxi0830 this needs to be migrated to use the API")
class Testeval:
@pytest.mark.asyncio
async def test_benchmarks_list(self, eval_stack):
# NOTE: this needs you to ensure that you are starting from a clean state
# but so far we don't have an unregister API unfortunately, so be careful
benchmarks_impl = eval_stack[Api.benchmarks]
response = await benchmarks_impl.list_benchmarks()
assert isinstance(response, list)
@pytest.mark.parametrize("scoring_fn_id", ["basic::equality"])
def test_evaluate_rows(llama_stack_client, text_model_id, scoring_fn_id):
register_dataset(llama_stack_client, for_generation=True, dataset_id="test_dataset_for_eval")
response = llama_stack_client.datasets.list()
assert any(x.identifier == "test_dataset_for_eval" for x in response)
@pytest.mark.asyncio
async def test_eval_evaluate_rows(self, eval_stack, inference_model, judge_model):
eval_impl, benchmarks_impl, datasetio_impl, datasets_impl = (
eval_stack[Api.eval],
eval_stack[Api.benchmarks],
eval_stack[Api.datasetio],
eval_stack[Api.datasets],
)
rows = llama_stack_client.datasetio.get_rows_paginated(
dataset_id="test_dataset_for_eval",
rows_in_page=3,
)
assert len(rows.rows) == 3
await register_dataset(datasets_impl, for_generation=True, dataset_id="test_dataset_for_eval")
response = await datasets_impl.list_datasets()
scoring_functions = [
scoring_fn_id,
]
benchmark_id = str(uuid.uuid4())
llama_stack_client.benchmarks.register(
benchmark_id=benchmark_id,
dataset_id="test_dataset_for_eval",
scoring_functions=scoring_functions,
)
list_benchmarks = llama_stack_client.benchmarks.list()
assert any(x.identifier == benchmark_id for x in list_benchmarks)
rows = await datasetio_impl.get_rows_paginated(
dataset_id="test_dataset_for_eval",
rows_in_page=3,
)
assert len(rows.rows) == 3
scoring_functions = [
"basic::equality",
]
benchmark_id = "meta-reference::app_eval"
await benchmarks_impl.register_benchmark(
benchmark_id=benchmark_id,
dataset_id="test_dataset_for_eval",
scoring_functions=scoring_functions,
)
response = await eval_impl.evaluate_rows(
benchmark_id=benchmark_id,
input_rows=rows.rows,
scoring_functions=scoring_functions,
benchmark_config=dict(
eval_candidate=ModelCandidate(
model=inference_model,
sampling_params=SamplingParams(),
),
scoring_params={
"meta-reference::llm_as_judge_base": LLMAsJudgeScoringFnParams(
judge_model=judge_model,
prompt_template=JUDGE_PROMPT,
judge_score_regexes=[
r"Total rating: (\d+)",
r"rating: (\d+)",
r"Rating: (\d+)",
],
)
response = llama_stack_client.eval.evaluate_rows(
benchmark_id=benchmark_id,
input_rows=rows.rows,
scoring_functions=scoring_functions,
benchmark_config={
"eval_candidate": {
"type": "model",
"model": text_model_id,
"sampling_params": {
"temperature": 0.0,
},
),
)
assert len(response.generations) == 3
assert "basic::equality" in response.scores
@pytest.mark.asyncio
async def test_eval_run_eval(self, eval_stack, inference_model, judge_model):
eval_impl, benchmarks_impl, datasets_impl = (
eval_stack[Api.eval],
eval_stack[Api.benchmarks],
eval_stack[Api.datasets],
)
await register_dataset(datasets_impl, for_generation=True, dataset_id="test_dataset_for_eval")
scoring_functions = [
"basic::subset_of",
]
benchmark_id = "meta-reference::app_eval-2"
await benchmarks_impl.register_benchmark(
benchmark_id=benchmark_id,
dataset_id="test_dataset_for_eval",
scoring_functions=scoring_functions,
)
response = await eval_impl.run_eval(
benchmark_id=benchmark_id,
benchmark_config=dict(
eval_candidate=ModelCandidate(
model=inference_model,
sampling_params=SamplingParams(),
),
),
)
assert response.job_id == "0"
job_status = await eval_impl.job_status(benchmark_id, response.job_id)
assert job_status and job_status.value == "completed"
eval_response = await eval_impl.job_result(benchmark_id, response.job_id)
assert eval_response is not None
assert len(eval_response.generations) == 5
assert "basic::subset_of" in eval_response.scores
@pytest.mark.asyncio
async def test_eval_run_benchmark_eval(self, eval_stack, inference_model):
eval_impl, benchmarks_impl, datasets_impl = (
eval_stack[Api.eval],
eval_stack[Api.benchmarks],
eval_stack[Api.datasets],
)
response = await datasets_impl.list_datasets()
assert len(response) > 0
if response[0].provider_id != "huggingface":
pytest.skip("Only huggingface provider supports pre-registered remote datasets")
await datasets_impl.register_dataset(
dataset_id="mmlu",
dataset_schema={
"input_query": StringType(),
"expected_answer": StringType(),
"chat_completion_input": ChatCompletionInputType(),
},
url=URL(uri="https://huggingface.co/datasets/llamastack/evals"),
metadata={
"path": "llamastack/evals",
"name": "evals__mmlu__details",
"split": "train",
},
)
assert len(response.generations) == 3
assert scoring_fn_id in response.scores
@pytest.mark.parametrize("scoring_fn_id", ["basic::subset_of"])
def test_evaluate_benchmark(llama_stack_client, text_model_id, scoring_fn_id):
register_dataset(llama_stack_client, for_generation=True, dataset_id="test_dataset_for_eval_2")
benchmark_id = str(uuid.uuid4())
llama_stack_client.benchmarks.register(
benchmark_id=benchmark_id,
dataset_id="test_dataset_for_eval_2",
scoring_functions=[scoring_fn_id],
)
response = llama_stack_client.eval.run_eval(
benchmark_id=benchmark_id,
benchmark_config={
"eval_candidate": {
"type": "model",
"model": text_model_id,
"sampling_params": {
"temperature": 0.0,
},
},
)
},
)
assert response.job_id == "0"
job_status = llama_stack_client.eval.jobs.status(job_id=response.job_id, benchmark_id=benchmark_id)
assert job_status and job_status == "completed"
# register eval task
await benchmarks_impl.register_benchmark(
benchmark_id="meta-reference-mmlu",
dataset_id="mmlu",
scoring_functions=["basic::regex_parser_multiple_choice_answer"],
)
# list benchmarks
response = await benchmarks_impl.list_benchmarks()
assert len(response) > 0
benchmark_id = "meta-reference-mmlu"
response = await eval_impl.run_eval(
benchmark_id=benchmark_id,
benchmark_config=dict(
eval_candidate=ModelCandidate(
model=inference_model,
sampling_params=SamplingParams(),
),
num_examples=3,
),
)
job_status = await eval_impl.job_status(benchmark_id, response.job_id)
assert job_status and job_status.value == "completed"
eval_response = await eval_impl.job_result(benchmark_id, response.job_id)
assert eval_response is not None
assert len(eval_response.generations) == 3
eval_response = llama_stack_client.eval.jobs.retrieve(job_id=response.job_id, benchmark_id=benchmark_id)
assert eval_response is not None
assert len(eval_response.generations) == 5
assert scoring_fn_id in eval_response.scores