fix(responses): use input, not original_input when storing the Response (#2300)

We must store the full (re-hydrated) input not just the original input
in the Response object. Of course, this is not very space efficient and
we should likely find a better storage scheme so that we can only store
unique entries in the database and then re-hydrate them efficiently
later. But that can be done safely later.

Closes https://github.com/meta-llama/llama-stack/issues/2299

## Test Plan

Unit test
This commit is contained in:
Ashwin Bharambe 2025-05-28 13:17:48 -07:00 committed by GitHub
parent a654467552
commit bfdd15d1fa
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
2 changed files with 76 additions and 11 deletions

View file

@ -292,12 +292,12 @@ class OpenAIResponsesImpl:
async def _store_response( async def _store_response(
self, self,
response: OpenAIResponseObject, response: OpenAIResponseObject,
original_input: str | list[OpenAIResponseInput], input: str | list[OpenAIResponseInput],
) -> None: ) -> None:
new_input_id = f"msg_{uuid.uuid4()}" new_input_id = f"msg_{uuid.uuid4()}"
if isinstance(original_input, str): if isinstance(input, str):
# synthesize a message from the input string # synthesize a message from the input string
input_content = OpenAIResponseInputMessageContentText(text=original_input) input_content = OpenAIResponseInputMessageContentText(text=input)
input_content_item = OpenAIResponseMessage( input_content_item = OpenAIResponseMessage(
role="user", role="user",
content=[input_content], content=[input_content],
@ -307,7 +307,7 @@ class OpenAIResponsesImpl:
else: else:
# we already have a list of messages # we already have a list of messages
input_items_data = [] input_items_data = []
for input_item in original_input: for input_item in input:
if isinstance(input_item, OpenAIResponseMessage): if isinstance(input_item, OpenAIResponseMessage):
# These may or may not already have an id, so dump to dict, check for id, and add if missing # These may or may not already have an id, so dump to dict, check for id, and add if missing
input_item_dict = input_item.model_dump() input_item_dict = input_item.model_dump()
@ -334,7 +334,6 @@ class OpenAIResponsesImpl:
tools: list[OpenAIResponseInputTool] | None = None, tools: list[OpenAIResponseInputTool] | None = None,
): ):
stream = False if stream is None else stream stream = False if stream is None else stream
original_input = input # Keep reference for storage
output_messages: list[OpenAIResponseOutput] = [] output_messages: list[OpenAIResponseOutput] = []
@ -372,7 +371,7 @@ class OpenAIResponsesImpl:
inference_result=inference_result, inference_result=inference_result,
ctx=ctx, ctx=ctx,
output_messages=output_messages, output_messages=output_messages,
original_input=original_input, input=input,
model=model, model=model,
store=store, store=store,
tools=tools, tools=tools,
@ -382,7 +381,7 @@ class OpenAIResponsesImpl:
inference_result=inference_result, inference_result=inference_result,
ctx=ctx, ctx=ctx,
output_messages=output_messages, output_messages=output_messages,
original_input=original_input, input=input,
model=model, model=model,
store=store, store=store,
tools=tools, tools=tools,
@ -393,7 +392,7 @@ class OpenAIResponsesImpl:
inference_result: Any, inference_result: Any,
ctx: ChatCompletionContext, ctx: ChatCompletionContext,
output_messages: list[OpenAIResponseOutput], output_messages: list[OpenAIResponseOutput],
original_input: str | list[OpenAIResponseInput], input: str | list[OpenAIResponseInput],
model: str, model: str,
store: bool | None, store: bool | None,
tools: list[OpenAIResponseInputTool] | None, tools: list[OpenAIResponseInputTool] | None,
@ -423,7 +422,7 @@ class OpenAIResponsesImpl:
if store: if store:
await self._store_response( await self._store_response(
response=response, response=response,
original_input=original_input, input=input,
) )
return response return response
@ -433,7 +432,7 @@ class OpenAIResponsesImpl:
inference_result: Any, inference_result: Any,
ctx: ChatCompletionContext, ctx: ChatCompletionContext,
output_messages: list[OpenAIResponseOutput], output_messages: list[OpenAIResponseOutput],
original_input: str | list[OpenAIResponseInput], input: str | list[OpenAIResponseInput],
model: str, model: str,
store: bool | None, store: bool | None,
tools: list[OpenAIResponseInputTool] | None, tools: list[OpenAIResponseInputTool] | None,
@ -544,7 +543,7 @@ class OpenAIResponsesImpl:
if store: if store:
await self._store_response( await self._store_response(
response=final_response, response=final_response,
original_input=original_input, input=input,
) )
# Emit response.completed # Emit response.completed

View file

@ -628,3 +628,69 @@ async def test_responses_store_list_input_items_logic():
result = await responses_store.list_response_input_items("resp_123", limit=0, order=Order.asc) result = await responses_store.list_response_input_items("resp_123", limit=0, order=Order.asc)
assert result.object == "list" assert result.object == "list"
assert len(result.data) == 0 # Should return no items assert len(result.data) == 0 # Should return no items
@pytest.mark.asyncio
async def test_store_response_uses_rehydrated_input_with_previous_response(
openai_responses_impl, mock_responses_store, mock_inference_api
):
"""Test that _store_response uses the full re-hydrated input (including previous responses)
rather than just the original input when previous_response_id is provided."""
# Setup - Create a previous response that should be included in the stored input
previous_response = OpenAIResponseObjectWithInput(
id="resp-previous-123",
object="response",
created_at=1234567890,
model="meta-llama/Llama-3.1-8B-Instruct",
status="completed",
input=[
OpenAIResponseMessage(
id="msg-prev-user", role="user", content=[OpenAIResponseInputMessageContentText(text="What is 2+2?")]
)
],
output=[
OpenAIResponseMessage(
id="msg-prev-assistant",
role="assistant",
content=[OpenAIResponseOutputMessageContentOutputText(text="2+2 equals 4.")],
)
],
)
mock_responses_store.get_response_object.return_value = previous_response
current_input = "Now what is 3+3?"
model = "meta-llama/Llama-3.1-8B-Instruct"
mock_chat_completion = load_chat_completion_fixture("simple_chat_completion.yaml")
mock_inference_api.openai_chat_completion.return_value = mock_chat_completion
# Execute - Create response with previous_response_id
result = await openai_responses_impl.create_openai_response(
input=current_input,
model=model,
previous_response_id="resp-previous-123",
store=True,
)
store_call_args = mock_responses_store.store_response_object.call_args
stored_input = store_call_args.kwargs["input"]
# Verify that the stored input contains the full re-hydrated conversation:
# 1. Previous user message
# 2. Previous assistant response
# 3. Current user message
assert len(stored_input) == 3
assert stored_input[0].role == "user"
assert stored_input[0].content[0].text == "What is 2+2?"
assert stored_input[1].role == "assistant"
assert stored_input[1].content[0].text == "2+2 equals 4."
assert stored_input[2].role == "user"
assert stored_input[2].content == "Now what is 3+3?"
# Verify the response itself is correct
assert result.model == model
assert result.status == "completed"