forked from phoenix-oss/llama-stack-mirror
feat(eval api): (2.2/n) delete eval / scoring / scoring_fn apis (#1700)
# What does this PR do? - To make it easier, delete existing `eval/scoring/scoring_function` apis. There will be a bunch of broken impls here. The sequence is: 1. migrate benchmark graders 2. clean up existing scoring functions - Add a skeleton evaluation impl to make tests pass. ## Test Plan tested in following PRs [//]: # (## Documentation)
This commit is contained in:
parent
0048274ec0
commit
c1d18283d2
113 changed files with 408 additions and 3900 deletions
|
@ -11,12 +11,9 @@ from pydantic import BaseModel, Field
|
|||
from llama_stack.apis.benchmarks import Benchmark, BenchmarkInput
|
||||
from llama_stack.apis.datasetio import DatasetIO
|
||||
from llama_stack.apis.datasets import Dataset, DatasetInput
|
||||
from llama_stack.apis.eval import Eval
|
||||
from llama_stack.apis.inference import Inference
|
||||
from llama_stack.apis.models import Model, ModelInput
|
||||
from llama_stack.apis.safety import Safety
|
||||
from llama_stack.apis.scoring import Scoring
|
||||
from llama_stack.apis.scoring_functions import ScoringFn, ScoringFnInput
|
||||
from llama_stack.apis.shields import Shield, ShieldInput
|
||||
from llama_stack.apis.tools import Tool, ToolGroup, ToolGroupInput, ToolRuntime
|
||||
from llama_stack.apis.vector_dbs import VectorDB, VectorDBInput
|
||||
|
@ -36,7 +33,6 @@ RoutableObject = Union[
|
|||
Shield,
|
||||
VectorDB,
|
||||
Dataset,
|
||||
ScoringFn,
|
||||
Benchmark,
|
||||
Tool,
|
||||
ToolGroup,
|
||||
|
@ -49,7 +45,6 @@ RoutableObjectWithProvider = Annotated[
|
|||
Shield,
|
||||
VectorDB,
|
||||
Dataset,
|
||||
ScoringFn,
|
||||
Benchmark,
|
||||
Tool,
|
||||
ToolGroup,
|
||||
|
@ -62,8 +57,6 @@ RoutedProtocol = Union[
|
|||
Safety,
|
||||
VectorIO,
|
||||
DatasetIO,
|
||||
Scoring,
|
||||
Eval,
|
||||
ToolRuntime,
|
||||
]
|
||||
|
||||
|
@ -191,7 +184,6 @@ a default SQLite store will be used.""",
|
|||
shields: List[ShieldInput] = Field(default_factory=list)
|
||||
vector_dbs: List[VectorDBInput] = Field(default_factory=list)
|
||||
datasets: List[DatasetInput] = Field(default_factory=list)
|
||||
scoring_fns: List[ScoringFnInput] = Field(default_factory=list)
|
||||
benchmarks: List[BenchmarkInput] = Field(default_factory=list)
|
||||
tool_groups: List[ToolGroupInput] = Field(default_factory=list)
|
||||
|
||||
|
|
|
@ -40,23 +40,19 @@ def builtin_automatically_routed_apis() -> List[AutoRoutedApiInfo]:
|
|||
router_api=Api.datasetio,
|
||||
),
|
||||
AutoRoutedApiInfo(
|
||||
routing_table_api=Api.scoring_functions,
|
||||
router_api=Api.scoring,
|
||||
routing_table_api=Api.tool_groups,
|
||||
router_api=Api.tool_runtime,
|
||||
),
|
||||
AutoRoutedApiInfo(
|
||||
routing_table_api=Api.benchmarks,
|
||||
router_api=Api.eval,
|
||||
),
|
||||
AutoRoutedApiInfo(
|
||||
routing_table_api=Api.tool_groups,
|
||||
router_api=Api.tool_runtime,
|
||||
router_api=Api.evaluation,
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
def providable_apis() -> List[Api]:
|
||||
routing_table_apis = {x.routing_table_api for x in builtin_automatically_routed_apis()}
|
||||
return [api for api in Api if api not in routing_table_apis and api != Api.inspect and api != Api.providers]
|
||||
return [api for api in Api if api not in routing_table_apis and api not in [Api.inspect, Api.providers]]
|
||||
|
||||
|
||||
def get_provider_registry() -> Dict[Api, Dict[str, ProviderSpec]]:
|
||||
|
|
|
@ -11,15 +11,12 @@ from llama_stack.apis.agents import Agents
|
|||
from llama_stack.apis.benchmarks import Benchmarks
|
||||
from llama_stack.apis.datasetio import DatasetIO
|
||||
from llama_stack.apis.datasets import Datasets
|
||||
from llama_stack.apis.eval import Eval
|
||||
from llama_stack.apis.inference import Inference
|
||||
from llama_stack.apis.inspect import Inspect
|
||||
from llama_stack.apis.models import Models
|
||||
from llama_stack.apis.post_training import PostTraining
|
||||
from llama_stack.apis.providers import Providers as ProvidersAPI
|
||||
from llama_stack.apis.safety import Safety
|
||||
from llama_stack.apis.scoring import Scoring
|
||||
from llama_stack.apis.scoring_functions import ScoringFunctions
|
||||
from llama_stack.apis.shields import Shields
|
||||
from llama_stack.apis.telemetry import Telemetry
|
||||
from llama_stack.apis.tools import ToolGroups, ToolRuntime
|
||||
|
@ -38,14 +35,12 @@ from llama_stack.distribution.utils.dynamic import instantiate_class_type
|
|||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.datatypes import (
|
||||
Api,
|
||||
BenchmarksProtocolPrivate,
|
||||
DatasetsProtocolPrivate,
|
||||
InlineProviderSpec,
|
||||
ModelsProtocolPrivate,
|
||||
ProviderSpec,
|
||||
RemoteProviderConfig,
|
||||
RemoteProviderSpec,
|
||||
ScoringFunctionsProtocolPrivate,
|
||||
ShieldsProtocolPrivate,
|
||||
ToolsProtocolPrivate,
|
||||
VectorDBsProtocolPrivate,
|
||||
|
@ -72,9 +67,6 @@ def api_protocol_map() -> Dict[Api, Any]:
|
|||
Api.telemetry: Telemetry,
|
||||
Api.datasetio: DatasetIO,
|
||||
Api.datasets: Datasets,
|
||||
Api.scoring: Scoring,
|
||||
Api.scoring_functions: ScoringFunctions,
|
||||
Api.eval: Eval,
|
||||
Api.benchmarks: Benchmarks,
|
||||
Api.post_training: PostTraining,
|
||||
Api.tool_groups: ToolGroups,
|
||||
|
@ -89,12 +81,6 @@ def additional_protocols_map() -> Dict[Api, Any]:
|
|||
Api.vector_io: (VectorDBsProtocolPrivate, VectorDBs, Api.vector_dbs),
|
||||
Api.safety: (ShieldsProtocolPrivate, Shields, Api.shields),
|
||||
Api.datasetio: (DatasetsProtocolPrivate, Datasets, Api.datasets),
|
||||
Api.scoring: (
|
||||
ScoringFunctionsProtocolPrivate,
|
||||
ScoringFunctions,
|
||||
Api.scoring_functions,
|
||||
),
|
||||
Api.eval: (BenchmarksProtocolPrivate, Benchmarks, Api.benchmarks),
|
||||
}
|
||||
|
||||
|
||||
|
@ -135,7 +121,9 @@ async def resolve_impls(
|
|||
return await instantiate_providers(sorted_providers, router_apis, dist_registry)
|
||||
|
||||
|
||||
def specs_for_autorouted_apis(apis_to_serve: List[str] | Set[str]) -> Dict[str, Dict[str, ProviderWithSpec]]:
|
||||
def specs_for_autorouted_apis(
|
||||
apis_to_serve: List[str] | Set[str],
|
||||
) -> Dict[str, Dict[str, ProviderWithSpec]]:
|
||||
"""Generates specifications for automatically routed APIs."""
|
||||
specs = {}
|
||||
for info in builtin_automatically_routed_apis():
|
||||
|
@ -177,7 +165,10 @@ def specs_for_autorouted_apis(apis_to_serve: List[str] | Set[str]) -> Dict[str,
|
|||
|
||||
|
||||
def validate_and_prepare_providers(
|
||||
run_config: StackRunConfig, provider_registry: ProviderRegistry, routing_table_apis: Set[Api], router_apis: Set[Api]
|
||||
run_config: StackRunConfig,
|
||||
provider_registry: ProviderRegistry,
|
||||
routing_table_apis: Set[Api],
|
||||
router_apis: Set[Api],
|
||||
) -> Dict[str, Dict[str, ProviderWithSpec]]:
|
||||
"""Validates providers, handles deprecations, and organizes them into a spec dictionary."""
|
||||
providers_with_specs: Dict[str, Dict[str, ProviderWithSpec]] = {}
|
||||
|
@ -221,7 +212,8 @@ def validate_provider(provider: Provider, api: Api, provider_registry: ProviderR
|
|||
|
||||
|
||||
def sort_providers_by_deps(
|
||||
providers_with_specs: Dict[str, Dict[str, ProviderWithSpec]], run_config: StackRunConfig
|
||||
providers_with_specs: Dict[str, Dict[str, ProviderWithSpec]],
|
||||
run_config: StackRunConfig,
|
||||
) -> List[Tuple[str, ProviderWithSpec]]:
|
||||
"""Sorts providers based on their dependencies."""
|
||||
sorted_providers: List[Tuple[str, ProviderWithSpec]] = topological_sort(
|
||||
|
@ -276,7 +268,9 @@ def sort_providers_by_deps(
|
|||
|
||||
|
||||
async def instantiate_providers(
|
||||
sorted_providers: List[Tuple[str, ProviderWithSpec]], router_apis: Set[Api], dist_registry: DistributionRegistry
|
||||
sorted_providers: List[Tuple[str, ProviderWithSpec]],
|
||||
router_apis: Set[Api],
|
||||
dist_registry: DistributionRegistry,
|
||||
) -> Dict:
|
||||
"""Instantiates providers asynchronously while managing dependencies."""
|
||||
impls: Dict[Api, Any] = {}
|
||||
|
|
|
@ -14,7 +14,6 @@ from .routing_tables import (
|
|||
BenchmarksRoutingTable,
|
||||
DatasetsRoutingTable,
|
||||
ModelsRoutingTable,
|
||||
ScoringFunctionsRoutingTable,
|
||||
ShieldsRoutingTable,
|
||||
ToolGroupsRoutingTable,
|
||||
VectorDBsRoutingTable,
|
||||
|
@ -32,7 +31,6 @@ async def get_routing_table_impl(
|
|||
"models": ModelsRoutingTable,
|
||||
"shields": ShieldsRoutingTable,
|
||||
"datasets": DatasetsRoutingTable,
|
||||
"scoring_functions": ScoringFunctionsRoutingTable,
|
||||
"benchmarks": BenchmarksRoutingTable,
|
||||
"tool_groups": ToolGroupsRoutingTable,
|
||||
}
|
||||
|
@ -48,10 +46,8 @@ async def get_routing_table_impl(
|
|||
async def get_auto_router_impl(api: Api, routing_table: RoutingTable, deps: Dict[str, Any]) -> Any:
|
||||
from .routers import (
|
||||
DatasetIORouter,
|
||||
EvalRouter,
|
||||
InferenceRouter,
|
||||
SafetyRouter,
|
||||
ScoringRouter,
|
||||
ToolRuntimeRouter,
|
||||
VectorIORouter,
|
||||
)
|
||||
|
@ -61,8 +57,6 @@ async def get_auto_router_impl(api: Api, routing_table: RoutingTable, deps: Dict
|
|||
"inference": InferenceRouter,
|
||||
"safety": SafetyRouter,
|
||||
"datasetio": DatasetIORouter,
|
||||
"scoring": ScoringRouter,
|
||||
"eval": EvalRouter,
|
||||
"tool_runtime": ToolRuntimeRouter,
|
||||
}
|
||||
api_to_deps = {
|
||||
|
|
|
@ -14,13 +14,6 @@ from llama_stack.apis.common.content_types import (
|
|||
)
|
||||
from llama_stack.apis.datasetio import DatasetIO, IterrowsResponse
|
||||
from llama_stack.apis.datasets import DatasetPurpose, DataSource
|
||||
from llama_stack.apis.eval import (
|
||||
BenchmarkConfig,
|
||||
Eval,
|
||||
EvaluateResponse,
|
||||
Job,
|
||||
JobStatus,
|
||||
)
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionResponse,
|
||||
ChatCompletionResponseEventType,
|
||||
|
@ -42,12 +35,6 @@ from llama_stack.apis.inference import (
|
|||
)
|
||||
from llama_stack.apis.models import Model, ModelType
|
||||
from llama_stack.apis.safety import RunShieldResponse, Safety
|
||||
from llama_stack.apis.scoring import (
|
||||
ScoreBatchResponse,
|
||||
ScoreResponse,
|
||||
Scoring,
|
||||
ScoringFnParams,
|
||||
)
|
||||
from llama_stack.apis.shields import Shield
|
||||
from llama_stack.apis.telemetry import MetricEvent, MetricInResponse, Telemetry
|
||||
from llama_stack.apis.tools import (
|
||||
|
@ -521,135 +508,6 @@ class DatasetIORouter(DatasetIO):
|
|||
)
|
||||
|
||||
|
||||
class ScoringRouter(Scoring):
|
||||
def __init__(
|
||||
self,
|
||||
routing_table: RoutingTable,
|
||||
) -> None:
|
||||
logger.debug("Initializing ScoringRouter")
|
||||
self.routing_table = routing_table
|
||||
|
||||
async def initialize(self) -> None:
|
||||
logger.debug("ScoringRouter.initialize")
|
||||
pass
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
logger.debug("ScoringRouter.shutdown")
|
||||
pass
|
||||
|
||||
async def score_batch(
|
||||
self,
|
||||
dataset_id: str,
|
||||
scoring_functions: Dict[str, Optional[ScoringFnParams]] = None,
|
||||
save_results_dataset: bool = False,
|
||||
) -> ScoreBatchResponse:
|
||||
logger.debug(f"ScoringRouter.score_batch: {dataset_id}")
|
||||
res = {}
|
||||
for fn_identifier in scoring_functions.keys():
|
||||
score_response = await self.routing_table.get_provider_impl(fn_identifier).score_batch(
|
||||
dataset_id=dataset_id,
|
||||
scoring_functions={fn_identifier: scoring_functions[fn_identifier]},
|
||||
)
|
||||
res.update(score_response.results)
|
||||
|
||||
if save_results_dataset:
|
||||
raise NotImplementedError("Save results dataset not implemented yet")
|
||||
|
||||
return ScoreBatchResponse(
|
||||
results=res,
|
||||
)
|
||||
|
||||
async def score(
|
||||
self,
|
||||
input_rows: List[Dict[str, Any]],
|
||||
scoring_functions: Dict[str, Optional[ScoringFnParams]] = None,
|
||||
) -> ScoreResponse:
|
||||
logger.debug(f"ScoringRouter.score: {len(input_rows)} rows, {len(scoring_functions)} functions")
|
||||
res = {}
|
||||
# look up and map each scoring function to its provider impl
|
||||
for fn_identifier in scoring_functions.keys():
|
||||
score_response = await self.routing_table.get_provider_impl(fn_identifier).score(
|
||||
input_rows=input_rows,
|
||||
scoring_functions={fn_identifier: scoring_functions[fn_identifier]},
|
||||
)
|
||||
res.update(score_response.results)
|
||||
|
||||
return ScoreResponse(results=res)
|
||||
|
||||
|
||||
class EvalRouter(Eval):
|
||||
def __init__(
|
||||
self,
|
||||
routing_table: RoutingTable,
|
||||
) -> None:
|
||||
logger.debug("Initializing EvalRouter")
|
||||
self.routing_table = routing_table
|
||||
|
||||
async def initialize(self) -> None:
|
||||
logger.debug("EvalRouter.initialize")
|
||||
pass
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
logger.debug("EvalRouter.shutdown")
|
||||
pass
|
||||
|
||||
async def run_eval(
|
||||
self,
|
||||
benchmark_id: str,
|
||||
benchmark_config: BenchmarkConfig,
|
||||
) -> Job:
|
||||
logger.debug(f"EvalRouter.run_eval: {benchmark_id}")
|
||||
return await self.routing_table.get_provider_impl(benchmark_id).run_eval(
|
||||
benchmark_id=benchmark_id,
|
||||
benchmark_config=benchmark_config,
|
||||
)
|
||||
|
||||
async def evaluate_rows(
|
||||
self,
|
||||
benchmark_id: str,
|
||||
input_rows: List[Dict[str, Any]],
|
||||
scoring_functions: List[str],
|
||||
benchmark_config: BenchmarkConfig,
|
||||
) -> EvaluateResponse:
|
||||
logger.debug(f"EvalRouter.evaluate_rows: {benchmark_id}, {len(input_rows)} rows")
|
||||
return await self.routing_table.get_provider_impl(benchmark_id).evaluate_rows(
|
||||
benchmark_id=benchmark_id,
|
||||
input_rows=input_rows,
|
||||
scoring_functions=scoring_functions,
|
||||
benchmark_config=benchmark_config,
|
||||
)
|
||||
|
||||
async def job_status(
|
||||
self,
|
||||
benchmark_id: str,
|
||||
job_id: str,
|
||||
) -> Optional[JobStatus]:
|
||||
logger.debug(f"EvalRouter.job_status: {benchmark_id}, {job_id}")
|
||||
return await self.routing_table.get_provider_impl(benchmark_id).job_status(benchmark_id, job_id)
|
||||
|
||||
async def job_cancel(
|
||||
self,
|
||||
benchmark_id: str,
|
||||
job_id: str,
|
||||
) -> None:
|
||||
logger.debug(f"EvalRouter.job_cancel: {benchmark_id}, {job_id}")
|
||||
await self.routing_table.get_provider_impl(benchmark_id).job_cancel(
|
||||
benchmark_id,
|
||||
job_id,
|
||||
)
|
||||
|
||||
async def job_result(
|
||||
self,
|
||||
benchmark_id: str,
|
||||
job_id: str,
|
||||
) -> EvaluateResponse:
|
||||
logger.debug(f"EvalRouter.job_result: {benchmark_id}, {job_id}")
|
||||
return await self.routing_table.get_provider_impl(benchmark_id).job_result(
|
||||
benchmark_id,
|
||||
job_id,
|
||||
)
|
||||
|
||||
|
||||
class ToolRuntimeRouter(ToolRuntime):
|
||||
class RagToolImpl(RAGToolRuntime):
|
||||
def __init__(
|
||||
|
|
|
@ -12,7 +12,6 @@ from pydantic import TypeAdapter
|
|||
|
||||
from llama_stack.apis.benchmarks import Benchmark, Benchmarks, ListBenchmarksResponse
|
||||
from llama_stack.apis.common.content_types import URL
|
||||
from llama_stack.apis.common.type_system import ParamType
|
||||
from llama_stack.apis.datasets import (
|
||||
Dataset,
|
||||
DatasetPurpose,
|
||||
|
@ -23,12 +22,6 @@ from llama_stack.apis.datasets import (
|
|||
)
|
||||
from llama_stack.apis.models import ListModelsResponse, Model, Models, ModelType
|
||||
from llama_stack.apis.resource import ResourceType
|
||||
from llama_stack.apis.scoring_functions import (
|
||||
ListScoringFunctionsResponse,
|
||||
ScoringFn,
|
||||
ScoringFnParams,
|
||||
ScoringFunctions,
|
||||
)
|
||||
from llama_stack.apis.shields import ListShieldsResponse, Shield, Shields
|
||||
from llama_stack.apis.tools import (
|
||||
ListToolGroupsResponse,
|
||||
|
@ -68,10 +61,6 @@ async def register_object_with_provider(obj: RoutableObject, p: Any) -> Routable
|
|||
return await p.register_vector_db(obj)
|
||||
elif api == Api.datasetio:
|
||||
return await p.register_dataset(obj)
|
||||
elif api == Api.scoring:
|
||||
return await p.register_scoring_function(obj)
|
||||
elif api == Api.eval:
|
||||
return await p.register_benchmark(obj)
|
||||
elif api == Api.tool_runtime:
|
||||
return await p.register_tool(obj)
|
||||
else:
|
||||
|
@ -117,7 +106,7 @@ class CommonRoutingTableImpl(RoutingTable):
|
|||
await self.dist_registry.register(obj)
|
||||
|
||||
# Register all objects from providers
|
||||
for pid, p in self.impls_by_provider_id.items():
|
||||
for _pid, p in self.impls_by_provider_id.items():
|
||||
api = get_impl_api(p)
|
||||
if api == Api.inference:
|
||||
p.model_store = self
|
||||
|
@ -127,12 +116,6 @@ class CommonRoutingTableImpl(RoutingTable):
|
|||
p.vector_db_store = self
|
||||
elif api == Api.datasetio:
|
||||
p.dataset_store = self
|
||||
elif api == Api.scoring:
|
||||
p.scoring_function_store = self
|
||||
scoring_functions = await p.list_scoring_functions()
|
||||
await add_objects(scoring_functions, pid, ScoringFn)
|
||||
elif api == Api.eval:
|
||||
p.benchmark_store = self
|
||||
elif api == Api.tool_runtime:
|
||||
p.tool_store = self
|
||||
|
||||
|
@ -150,8 +133,6 @@ class CommonRoutingTableImpl(RoutingTable):
|
|||
return ("VectorIO", "vector_db")
|
||||
elif isinstance(self, DatasetsRoutingTable):
|
||||
return ("DatasetIO", "dataset")
|
||||
elif isinstance(self, ScoringFunctionsRoutingTable):
|
||||
return ("Scoring", "scoring_function")
|
||||
elif isinstance(self, BenchmarksRoutingTable):
|
||||
return ("Eval", "benchmark")
|
||||
elif isinstance(self, ToolGroupsRoutingTable):
|
||||
|
@ -416,46 +397,6 @@ class DatasetsRoutingTable(CommonRoutingTableImpl, Datasets):
|
|||
await self.unregister_object(dataset)
|
||||
|
||||
|
||||
class ScoringFunctionsRoutingTable(CommonRoutingTableImpl, ScoringFunctions):
|
||||
async def list_scoring_functions(self) -> ListScoringFunctionsResponse:
|
||||
return ListScoringFunctionsResponse(data=await self.get_all_with_type(ResourceType.scoring_function.value))
|
||||
|
||||
async def get_scoring_function(self, scoring_fn_id: str) -> ScoringFn:
|
||||
scoring_fn = await self.get_object_by_identifier("scoring_function", scoring_fn_id)
|
||||
if scoring_fn is None:
|
||||
raise ValueError(f"Scoring function '{scoring_fn_id}' not found")
|
||||
return scoring_fn
|
||||
|
||||
async def register_scoring_function(
|
||||
self,
|
||||
scoring_fn_id: str,
|
||||
description: str,
|
||||
return_type: ParamType,
|
||||
provider_scoring_fn_id: Optional[str] = None,
|
||||
provider_id: Optional[str] = None,
|
||||
params: Optional[ScoringFnParams] = None,
|
||||
) -> None:
|
||||
if provider_scoring_fn_id is None:
|
||||
provider_scoring_fn_id = scoring_fn_id
|
||||
if provider_id is None:
|
||||
if len(self.impls_by_provider_id) == 1:
|
||||
provider_id = list(self.impls_by_provider_id.keys())[0]
|
||||
else:
|
||||
raise ValueError(
|
||||
"No provider specified and multiple providers available. Please specify a provider_id."
|
||||
)
|
||||
scoring_fn = ScoringFn(
|
||||
identifier=scoring_fn_id,
|
||||
description=description,
|
||||
return_type=return_type,
|
||||
provider_resource_id=provider_scoring_fn_id,
|
||||
provider_id=provider_id,
|
||||
params=params,
|
||||
)
|
||||
scoring_fn.provider_id = provider_id
|
||||
await self.register_object(scoring_fn)
|
||||
|
||||
|
||||
class BenchmarksRoutingTable(CommonRoutingTableImpl, Benchmarks):
|
||||
async def list_benchmarks(self) -> ListBenchmarksResponse:
|
||||
return ListBenchmarksResponse(data=await self.get_all_with_type("benchmark"))
|
||||
|
|
|
@ -17,7 +17,6 @@ from llama_stack.apis.batch_inference import BatchInference
|
|||
from llama_stack.apis.benchmarks import Benchmarks
|
||||
from llama_stack.apis.datasetio import DatasetIO
|
||||
from llama_stack.apis.datasets import Datasets
|
||||
from llama_stack.apis.eval import Eval
|
||||
from llama_stack.apis.evaluation import Evaluation
|
||||
from llama_stack.apis.files import Files
|
||||
from llama_stack.apis.graders import Graders
|
||||
|
@ -27,8 +26,6 @@ from llama_stack.apis.models import Models
|
|||
from llama_stack.apis.post_training import PostTraining
|
||||
from llama_stack.apis.providers import Providers
|
||||
from llama_stack.apis.safety import Safety
|
||||
from llama_stack.apis.scoring import Scoring
|
||||
from llama_stack.apis.scoring_functions import ScoringFunctions
|
||||
from llama_stack.apis.shields import Shields
|
||||
from llama_stack.apis.synthetic_data_generation import SyntheticDataGeneration
|
||||
from llama_stack.apis.telemetry import Telemetry
|
||||
|
@ -69,9 +66,6 @@ class LlamaStack(
|
|||
Files,
|
||||
Graders,
|
||||
Evaluation,
|
||||
Eval,
|
||||
ScoringFunctions,
|
||||
Scoring,
|
||||
):
|
||||
pass
|
||||
|
||||
|
@ -81,12 +75,6 @@ RESOURCES = [
|
|||
("shields", Api.shields, "register_shield", "list_shields"),
|
||||
("vector_dbs", Api.vector_dbs, "register_vector_db", "list_vector_dbs"),
|
||||
("datasets", Api.datasets, "register_dataset", "list_datasets"),
|
||||
(
|
||||
"scoring_fns",
|
||||
Api.scoring_functions,
|
||||
"register_scoring_function",
|
||||
"list_scoring_functions",
|
||||
),
|
||||
("benchmarks", Api.benchmarks, "register_benchmark", "list_benchmarks"),
|
||||
("tool_groups", Api.tool_groups, "register_tool_group", "list_tool_groups"),
|
||||
]
|
||||
|
|
|
@ -26,7 +26,10 @@ class LlamaStackApi:
|
|||
"""Run scoring on a single row"""
|
||||
if not scoring_params:
|
||||
scoring_params = {fn_id: None for fn_id in scoring_function_ids}
|
||||
return self.client.scoring.score(input_rows=[row], scoring_functions=scoring_params)
|
||||
|
||||
# TODO(xiyan): fix this
|
||||
# return self.client.scoring.score(input_rows=[row], scoring_functions=scoring_params)
|
||||
raise NotImplementedError("Scoring is not implemented")
|
||||
|
||||
|
||||
llama_stack_api = LlamaStackApi()
|
||||
|
|
|
@ -9,7 +9,6 @@ from streamlit_option_menu import option_menu
|
|||
from llama_stack.distribution.ui.page.distribution.datasets import datasets
|
||||
from llama_stack.distribution.ui.page.distribution.eval_tasks import benchmarks
|
||||
from llama_stack.distribution.ui.page.distribution.models import models
|
||||
from llama_stack.distribution.ui.page.distribution.scoring_functions import scoring_functions
|
||||
from llama_stack.distribution.ui.page.distribution.shields import shields
|
||||
from llama_stack.distribution.ui.page.distribution.vector_dbs import vector_dbs
|
||||
|
||||
|
@ -43,8 +42,9 @@ def resources_page():
|
|||
datasets()
|
||||
elif selected_resource == "Models":
|
||||
models()
|
||||
elif selected_resource == "Scoring Functions":
|
||||
scoring_functions()
|
||||
# TODO(xiyan): fix this
|
||||
# elif selected_resource == "Scoring Functions":
|
||||
# scoring_functions()
|
||||
elif selected_resource == "Shields":
|
||||
shields()
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue