forked from phoenix-oss/llama-stack-mirror
feat(eval api): (2.2/n) delete eval / scoring / scoring_fn apis (#1700)
# What does this PR do? - To make it easier, delete existing `eval/scoring/scoring_function` apis. There will be a bunch of broken impls here. The sequence is: 1. migrate benchmark graders 2. clean up existing scoring functions - Add a skeleton evaluation impl to make tests pass. ## Test Plan tested in following PRs [//]: # (## Documentation)
This commit is contained in:
parent
0048274ec0
commit
c1d18283d2
113 changed files with 408 additions and 3900 deletions
|
@ -13,7 +13,6 @@ from llama_stack.apis.benchmarks import Benchmark
|
|||
from llama_stack.apis.datasets import Dataset
|
||||
from llama_stack.apis.datatypes import Api
|
||||
from llama_stack.apis.models import Model
|
||||
from llama_stack.apis.scoring_functions import ScoringFn
|
||||
from llama_stack.apis.shields import Shield
|
||||
from llama_stack.apis.tools import Tool
|
||||
from llama_stack.apis.vector_dbs import VectorDB
|
||||
|
@ -42,12 +41,6 @@ class DatasetsProtocolPrivate(Protocol):
|
|||
async def unregister_dataset(self, dataset_id: str) -> None: ...
|
||||
|
||||
|
||||
class ScoringFunctionsProtocolPrivate(Protocol):
|
||||
async def list_scoring_functions(self) -> List[ScoringFn]: ...
|
||||
|
||||
async def register_scoring_function(self, scoring_fn: ScoringFn) -> None: ...
|
||||
|
||||
|
||||
class BenchmarksProtocolPrivate(Protocol):
|
||||
async def register_benchmark(self, benchmark: Benchmark) -> None: ...
|
||||
|
||||
|
|
|
@ -20,7 +20,6 @@ async def get_provider_impl(
|
|||
config,
|
||||
deps[Api.datasetio],
|
||||
deps[Api.datasets],
|
||||
deps[Api.scoring],
|
||||
deps[Api.inference],
|
||||
deps[Api.agents],
|
||||
)
|
||||
|
|
|
@ -13,7 +13,6 @@ from llama_stack.apis.benchmarks import Benchmark
|
|||
from llama_stack.apis.datasetio import DatasetIO
|
||||
from llama_stack.apis.datasets import Datasets
|
||||
from llama_stack.apis.inference import Inference, SystemMessage, UserMessage
|
||||
from llama_stack.apis.scoring import Scoring
|
||||
from llama_stack.providers.datatypes import BenchmarksProtocolPrivate
|
||||
from llama_stack.providers.inline.agents.meta_reference.agent_instance import (
|
||||
MEMORY_QUERY_TOOL,
|
||||
|
@ -37,14 +36,14 @@ class MetaReferenceEvalImpl(
|
|||
config: MetaReferenceEvalConfig,
|
||||
datasetio_api: DatasetIO,
|
||||
datasets_api: Datasets,
|
||||
scoring_api: Scoring,
|
||||
inference_api: Inference,
|
||||
agents_api: Agents,
|
||||
) -> None:
|
||||
self.config = config
|
||||
self.datasetio_api = datasetio_api
|
||||
self.datasets_api = datasets_api
|
||||
self.scoring_api = scoring_api
|
||||
# TODO(xiyan): this implementation will be refactored
|
||||
self.scoring_api = None
|
||||
self.inference_api = inference_api
|
||||
self.agents_api = agents_api
|
||||
|
||||
|
|
|
@ -0,0 +1,27 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from typing import Any, Dict
|
||||
|
||||
from llama_stack.distribution.datatypes import Api
|
||||
|
||||
from .config import MetaReferenceEvaluationConfig
|
||||
|
||||
|
||||
async def get_provider_impl(
|
||||
config: MetaReferenceEvaluationConfig,
|
||||
deps: Dict[Api, Any],
|
||||
):
|
||||
from .evaluation import MetaReferenceEvaluationImpl
|
||||
|
||||
impl = MetaReferenceEvaluationImpl(
|
||||
config,
|
||||
deps[Api.datasetio],
|
||||
deps[Api.datasets],
|
||||
deps[Api.inference],
|
||||
deps[Api.agents],
|
||||
)
|
||||
await impl.initialize()
|
||||
return impl
|
|
@ -0,0 +1,26 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from typing import Any, Dict
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llama_stack.providers.utils.kvstore.config import (
|
||||
KVStoreConfig,
|
||||
SqliteKVStoreConfig,
|
||||
)
|
||||
|
||||
|
||||
class MetaReferenceEvaluationConfig(BaseModel):
|
||||
kvstore: KVStoreConfig
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> Dict[str, Any]:
|
||||
return {
|
||||
"kvstore": SqliteKVStoreConfig.sample_run_config(
|
||||
__distro_dir__=__distro_dir__,
|
||||
db_name="meta_reference_evaluation.db",
|
||||
)
|
||||
}
|
|
@ -0,0 +1,71 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.apis.agents import Agents
|
||||
from llama_stack.apis.datasetio import DatasetIO
|
||||
from llama_stack.apis.datasets import Datasets
|
||||
from llama_stack.apis.inference import Inference
|
||||
from llama_stack.providers.datatypes import BenchmarksProtocolPrivate
|
||||
|
||||
from .....apis.benchmarks import Benchmark
|
||||
from .....apis.evaluation.evaluation import (
|
||||
Evaluation,
|
||||
EvaluationCandidate,
|
||||
EvaluationJob,
|
||||
EvaluationResponse,
|
||||
EvaluationTask,
|
||||
)
|
||||
from .config import MetaReferenceEvaluationConfig
|
||||
|
||||
EVAL_TASKS_PREFIX = "benchmarks:"
|
||||
|
||||
|
||||
class MetaReferenceEvaluationImpl(
|
||||
Evaluation,
|
||||
BenchmarksProtocolPrivate,
|
||||
):
|
||||
def __init__(
|
||||
self,
|
||||
config: MetaReferenceEvaluationConfig,
|
||||
datasetio_api: DatasetIO,
|
||||
datasets_api: Datasets,
|
||||
inference_api: Inference,
|
||||
agents_api: Agents,
|
||||
) -> None:
|
||||
self.config = config
|
||||
self.datasetio_api = datasetio_api
|
||||
self.datasets_api = datasets_api
|
||||
self.inference_api = inference_api
|
||||
self.agents_api = agents_api
|
||||
|
||||
async def initialize(self) -> None:
|
||||
pass
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
async def register_benchmark(self, benchmark: Benchmark) -> None:
|
||||
pass
|
||||
|
||||
async def run(
|
||||
self,
|
||||
task: EvaluationTask,
|
||||
candidate: EvaluationCandidate,
|
||||
) -> EvaluationJob:
|
||||
raise NotImplementedError("Run is not implemented yet")
|
||||
|
||||
async def run_sync(
|
||||
self,
|
||||
task: EvaluationTask,
|
||||
candidate: EvaluationCandidate,
|
||||
) -> EvaluationResponse:
|
||||
raise NotImplementedError("Run sync is not implemented yet")
|
||||
|
||||
async def grade(self, task: EvaluationTask) -> EvaluationJob:
|
||||
raise NotImplementedError("Grade is not implemented yet")
|
||||
|
||||
async def grade_sync(self, task: EvaluationTask) -> EvaluationResponse:
|
||||
raise NotImplementedError("Grade sync is not implemented yet")
|
|
@ -1,28 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import List
|
||||
|
||||
from llama_stack.providers.datatypes import Api, InlineProviderSpec, ProviderSpec
|
||||
|
||||
|
||||
def available_providers() -> List[ProviderSpec]:
|
||||
return [
|
||||
InlineProviderSpec(
|
||||
api=Api.eval,
|
||||
provider_type="inline::meta-reference",
|
||||
pip_packages=["tree_sitter"],
|
||||
module="llama_stack.providers.inline.eval.meta_reference",
|
||||
config_class="llama_stack.providers.inline.eval.meta_reference.MetaReferenceEvalConfig",
|
||||
api_dependencies=[
|
||||
Api.datasetio,
|
||||
Api.datasets,
|
||||
Api.scoring,
|
||||
Api.inference,
|
||||
Api.agents,
|
||||
],
|
||||
),
|
||||
]
|
36
llama_stack/providers/registry/evaluation.py
Normal file
36
llama_stack/providers/registry/evaluation.py
Normal file
|
@ -0,0 +1,36 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import List
|
||||
|
||||
from llama_stack.providers.datatypes import Api, InlineProviderSpec, ProviderSpec
|
||||
from llama_stack.providers.utils.kvstore import kvstore_dependencies
|
||||
|
||||
|
||||
def available_providers() -> List[ProviderSpec]:
|
||||
return [
|
||||
InlineProviderSpec(
|
||||
api=Api.evaluation,
|
||||
provider_type="inline::meta-reference",
|
||||
pip_packages=[
|
||||
"matplotlib",
|
||||
"pillow",
|
||||
"pandas",
|
||||
"scikit-learn",
|
||||
]
|
||||
+ kvstore_dependencies(),
|
||||
module="llama_stack.providers.inline.evaluation.meta_reference",
|
||||
config_class="llama_stack.providers.inline.evaluation.meta_reference.MetaReferenceEvaluationImplConfig",
|
||||
api_dependencies=[
|
||||
Api.inference,
|
||||
Api.safety,
|
||||
Api.vector_io,
|
||||
Api.vector_dbs,
|
||||
Api.tool_runtime,
|
||||
Api.tool_groups,
|
||||
],
|
||||
),
|
||||
]
|
|
@ -1,49 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import List
|
||||
|
||||
from llama_stack.providers.datatypes import Api, InlineProviderSpec, ProviderSpec
|
||||
|
||||
|
||||
def available_providers() -> List[ProviderSpec]:
|
||||
return [
|
||||
InlineProviderSpec(
|
||||
api=Api.scoring,
|
||||
provider_type="inline::basic",
|
||||
pip_packages=[],
|
||||
module="llama_stack.providers.inline.scoring.basic",
|
||||
config_class="llama_stack.providers.inline.scoring.basic.BasicScoringConfig",
|
||||
api_dependencies=[
|
||||
Api.datasetio,
|
||||
Api.datasets,
|
||||
],
|
||||
),
|
||||
InlineProviderSpec(
|
||||
api=Api.scoring,
|
||||
provider_type="inline::llm-as-judge",
|
||||
pip_packages=[],
|
||||
module="llama_stack.providers.inline.scoring.llm_as_judge",
|
||||
config_class="llama_stack.providers.inline.scoring.llm_as_judge.LlmAsJudgeScoringConfig",
|
||||
api_dependencies=[
|
||||
Api.datasetio,
|
||||
Api.datasets,
|
||||
Api.inference,
|
||||
],
|
||||
),
|
||||
InlineProviderSpec(
|
||||
api=Api.scoring,
|
||||
provider_type="inline::braintrust",
|
||||
pip_packages=["autoevals", "openai"],
|
||||
module="llama_stack.providers.inline.scoring.braintrust",
|
||||
config_class="llama_stack.providers.inline.scoring.braintrust.BraintrustScoringConfig",
|
||||
api_dependencies=[
|
||||
Api.datasetio,
|
||||
Api.datasets,
|
||||
],
|
||||
provider_data_validator="llama_stack.providers.inline.scoring.braintrust.BraintrustProviderDataValidator",
|
||||
),
|
||||
]
|
|
@ -5,14 +5,12 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
from enum import Enum
|
||||
from typing import Any, Dict, List
|
||||
|
||||
from llama_stack.apis.common.type_system import (
|
||||
ChatCompletionInputType,
|
||||
CompletionInputType,
|
||||
StringType,
|
||||
)
|
||||
from llama_stack.distribution.datatypes import Api
|
||||
|
||||
|
||||
class ColumnName(Enum):
|
||||
|
@ -75,29 +73,31 @@ VALID_SCHEMAS_FOR_EVAL = [
|
|||
]
|
||||
|
||||
|
||||
def get_valid_schemas(api_str: str):
|
||||
if api_str == Api.scoring.value:
|
||||
return VALID_SCHEMAS_FOR_SCORING
|
||||
elif api_str == Api.eval.value:
|
||||
return VALID_SCHEMAS_FOR_EVAL
|
||||
else:
|
||||
raise ValueError(f"Invalid API string: {api_str}")
|
||||
# TODO(xiyan): add this back
|
||||
|
||||
# def get_valid_schemas(api_str: str):
|
||||
# if api_str == Api.scoring.value:
|
||||
# return VALID_SCHEMAS_FOR_SCORING
|
||||
# elif api_str == Api.eval.value:
|
||||
# return VALID_SCHEMAS_FOR_EVAL
|
||||
# else:
|
||||
# raise ValueError(f"Invalid API string: {api_str}")
|
||||
|
||||
|
||||
def validate_dataset_schema(
|
||||
dataset_schema: Dict[str, Any],
|
||||
expected_schemas: List[Dict[str, Any]],
|
||||
):
|
||||
if dataset_schema not in expected_schemas:
|
||||
raise ValueError(f"Dataset {dataset_schema} does not have a correct input schema in {expected_schemas}")
|
||||
# def validate_dataset_schema(
|
||||
# dataset_schema: Dict[str, Any],
|
||||
# expected_schemas: List[Dict[str, Any]],
|
||||
# ):
|
||||
# if dataset_schema not in expected_schemas:
|
||||
# raise ValueError(f"Dataset {dataset_schema} does not have a correct input schema in {expected_schemas}")
|
||||
|
||||
|
||||
def validate_row_schema(
|
||||
input_row: Dict[str, Any],
|
||||
expected_schemas: List[Dict[str, Any]],
|
||||
):
|
||||
for schema in expected_schemas:
|
||||
if all(key in input_row for key in schema):
|
||||
return
|
||||
# def validate_row_schema(
|
||||
# input_row: Dict[str, Any],
|
||||
# expected_schemas: List[Dict[str, Any]],
|
||||
# ):
|
||||
# for schema in expected_schemas:
|
||||
# if all(key in input_row for key in schema):
|
||||
# return
|
||||
|
||||
raise ValueError(f"Input row {input_row} does not match any of the expected schemas in {expected_schemas}")
|
||||
# raise ValueError(f"Input row {input_row} does not match any of the expected schemas in {expected_schemas}")
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue