forked from phoenix-oss/llama-stack-mirror
Split safety into (llama-guard, prompt-guard, code-scanner) (#400)
Splits the meta-reference safety implementation into three distinct providers: - inline::llama-guard - inline::prompt-guard - inline::code-scanner Note that this PR is a backward incompatible change to the llama stack server. I have added deprecation_error field to ProviderSpec -- the server reads it and immediately barfs. This is used to direct the user with a specific message on what action to perform. An automagical "config upgrade" is a bit too much work to implement right now :/ (Note that we will be gradually prefixing all inline providers with inline:: -- I am only doing this for this set of new providers because otherwise existing configuration files will break even more badly.)
This commit is contained in:
parent
6d38b1690b
commit
c1f7ba3aed
47 changed files with 464 additions and 500 deletions
120
llama_stack/providers/inline/safety/prompt_guard/prompt_guard.py
Normal file
120
llama_stack/providers/inline/safety/prompt_guard/prompt_guard.py
Normal file
|
@ -0,0 +1,120 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict, List
|
||||
|
||||
import torch
|
||||
from termcolor import cprint
|
||||
|
||||
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
||||
|
||||
from llama_stack.distribution.utils.model_utils import model_local_dir
|
||||
from llama_stack.apis.inference import * # noqa: F403
|
||||
from llama_stack.apis.safety import * # noqa: F403
|
||||
from llama_models.llama3.api.datatypes import * # noqa: F403
|
||||
|
||||
from llama_stack.providers.datatypes import ShieldsProtocolPrivate
|
||||
|
||||
from .config import PromptGuardConfig, PromptGuardType
|
||||
|
||||
|
||||
PROMPT_GUARD_MODEL = "Prompt-Guard-86M"
|
||||
|
||||
|
||||
class PromptGuardSafetyImpl(Safety, ShieldsProtocolPrivate):
|
||||
def __init__(self, config: PromptGuardConfig, _deps) -> None:
|
||||
self.config = config
|
||||
|
||||
async def initialize(self) -> None:
|
||||
model_dir = model_local_dir(PROMPT_GUARD_MODEL)
|
||||
self.shield = PromptGuardShield(model_dir, self.config)
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
async def register_shield(self, shield: Shield) -> None:
|
||||
if shield.shield_type != ShieldType.prompt_guard:
|
||||
raise ValueError(f"Unsupported shield type: {shield.shield_type}")
|
||||
|
||||
async def run_shield(
|
||||
self,
|
||||
shield_id: str,
|
||||
messages: List[Message],
|
||||
params: Dict[str, Any] = None,
|
||||
) -> RunShieldResponse:
|
||||
shield = await self.shield_store.get_shield(shield_id)
|
||||
if not shield:
|
||||
raise ValueError(f"Unknown shield {shield_id}")
|
||||
|
||||
return await self.shield.run(messages)
|
||||
|
||||
|
||||
class PromptGuardShield:
|
||||
def __init__(
|
||||
self,
|
||||
model_dir: str,
|
||||
config: PromptGuardConfig,
|
||||
threshold: float = 0.9,
|
||||
temperature: float = 1.0,
|
||||
):
|
||||
assert (
|
||||
model_dir is not None
|
||||
), "Must provide a model directory for prompt injection shield"
|
||||
if temperature <= 0:
|
||||
raise ValueError("Temperature must be greater than 0")
|
||||
|
||||
self.config = config
|
||||
self.temperature = temperature
|
||||
self.threshold = threshold
|
||||
|
||||
self.device = "cuda"
|
||||
|
||||
# load model and tokenizer
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(model_dir)
|
||||
self.model = AutoModelForSequenceClassification.from_pretrained(
|
||||
model_dir, device_map=self.device
|
||||
)
|
||||
|
||||
async def run(self, messages: List[Message]) -> RunShieldResponse:
|
||||
message = messages[-1]
|
||||
text = interleaved_text_media_as_str(message.content)
|
||||
|
||||
# run model on messages and return response
|
||||
inputs = self.tokenizer(text, return_tensors="pt")
|
||||
inputs = {name: tensor.to(self.model.device) for name, tensor in inputs.items()}
|
||||
with torch.no_grad():
|
||||
outputs = self.model(**inputs)
|
||||
logits = outputs[0]
|
||||
probabilities = torch.softmax(logits / self.temperature, dim=-1)
|
||||
score_embedded = probabilities[0, 1].item()
|
||||
score_malicious = probabilities[0, 2].item()
|
||||
cprint(
|
||||
f"Ran PromptGuardShield and got Scores: Embedded: {score_embedded}, Malicious: {score_malicious}",
|
||||
color="magenta",
|
||||
)
|
||||
|
||||
violation = None
|
||||
if self.config.guard_type == PromptGuardType.injection.value and (
|
||||
score_embedded + score_malicious > self.threshold
|
||||
):
|
||||
violation = SafetyViolation(
|
||||
violation_level=ViolationLevel.ERROR,
|
||||
user_message="Sorry, I cannot do this.",
|
||||
metadata={
|
||||
"violation_type": f"prompt_injection:embedded={score_embedded},malicious={score_malicious}",
|
||||
},
|
||||
)
|
||||
elif (
|
||||
self.config.guard_type == PromptGuardType.jailbreak.value
|
||||
and score_malicious > self.threshold
|
||||
):
|
||||
violation = SafetyViolation(
|
||||
violation_level=ViolationLevel.ERROR,
|
||||
violation_type=f"prompt_injection:malicious={score_malicious}",
|
||||
violation_return_message="Sorry, I cannot do this.",
|
||||
)
|
||||
|
||||
return RunShieldResponse(violation=violation)
|
Loading…
Add table
Add a link
Reference in a new issue