forked from phoenix-oss/llama-stack-mirror
[memory refactor][5/n] Migrate all vector_io providers (#835)
See https://github.com/meta-llama/llama-stack/issues/827 for the broader design. This PR finishes off all the stragglers and migrates everything to the new naming.
This commit is contained in:
parent
63f37f9b7c
commit
c9e5578151
78 changed files with 504 additions and 623 deletions
|
@ -9,7 +9,7 @@ import os
|
|||
import pytest
|
||||
import pytest_asyncio
|
||||
from llama_stack.apis.inference import Model
|
||||
from llama_stack.apis.memory_banks import VectorMemoryBank
|
||||
from llama_stack.apis.vector_dbs import VectorDB
|
||||
|
||||
from llama_stack.distribution.store.registry import (
|
||||
CachedDiskDistributionRegistry,
|
||||
|
@ -42,13 +42,12 @@ async def cached_registry(config):
|
|||
|
||||
|
||||
@pytest.fixture
|
||||
def sample_bank():
|
||||
return VectorMemoryBank(
|
||||
identifier="test_bank",
|
||||
def sample_vector_db():
|
||||
return VectorDB(
|
||||
identifier="test_vector_db",
|
||||
embedding_model="all-MiniLM-L6-v2",
|
||||
chunk_size_in_tokens=512,
|
||||
overlap_size_in_tokens=64,
|
||||
provider_resource_id="test_bank",
|
||||
embedding_dimension=384,
|
||||
provider_resource_id="test_vector_db",
|
||||
provider_id="test-provider",
|
||||
)
|
||||
|
||||
|
@ -70,19 +69,17 @@ async def test_registry_initialization(registry):
|
|||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_basic_registration(registry, sample_bank, sample_model):
|
||||
print(f"Registering {sample_bank}")
|
||||
await registry.register(sample_bank)
|
||||
async def test_basic_registration(registry, sample_vector_db, sample_model):
|
||||
print(f"Registering {sample_vector_db}")
|
||||
await registry.register(sample_vector_db)
|
||||
print(f"Registering {sample_model}")
|
||||
await registry.register(sample_model)
|
||||
print("Getting bank")
|
||||
result_bank = await registry.get("memory_bank", "test_bank")
|
||||
assert result_bank is not None
|
||||
assert result_bank.identifier == sample_bank.identifier
|
||||
assert result_bank.embedding_model == sample_bank.embedding_model
|
||||
assert result_bank.chunk_size_in_tokens == sample_bank.chunk_size_in_tokens
|
||||
assert result_bank.overlap_size_in_tokens == sample_bank.overlap_size_in_tokens
|
||||
assert result_bank.provider_id == sample_bank.provider_id
|
||||
print("Getting vector_db")
|
||||
result_vector_db = await registry.get("vector_db", "test_vector_db")
|
||||
assert result_vector_db is not None
|
||||
assert result_vector_db.identifier == sample_vector_db.identifier
|
||||
assert result_vector_db.embedding_model == sample_vector_db.embedding_model
|
||||
assert result_vector_db.provider_id == sample_vector_db.provider_id
|
||||
|
||||
result_model = await registry.get("model", "test_model")
|
||||
assert result_model is not None
|
||||
|
@ -91,24 +88,23 @@ async def test_basic_registration(registry, sample_bank, sample_model):
|
|||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_cached_registry_initialization(config, sample_bank, sample_model):
|
||||
async def test_cached_registry_initialization(config, sample_vector_db, sample_model):
|
||||
# First populate the disk registry
|
||||
disk_registry = DiskDistributionRegistry(await kvstore_impl(config))
|
||||
await disk_registry.initialize()
|
||||
await disk_registry.register(sample_bank)
|
||||
await disk_registry.register(sample_vector_db)
|
||||
await disk_registry.register(sample_model)
|
||||
|
||||
# Test cached version loads from disk
|
||||
cached_registry = CachedDiskDistributionRegistry(await kvstore_impl(config))
|
||||
await cached_registry.initialize()
|
||||
|
||||
result_bank = await cached_registry.get("memory_bank", "test_bank")
|
||||
assert result_bank is not None
|
||||
assert result_bank.identifier == sample_bank.identifier
|
||||
assert result_bank.embedding_model == sample_bank.embedding_model
|
||||
assert result_bank.chunk_size_in_tokens == sample_bank.chunk_size_in_tokens
|
||||
assert result_bank.overlap_size_in_tokens == sample_bank.overlap_size_in_tokens
|
||||
assert result_bank.provider_id == sample_bank.provider_id
|
||||
result_vector_db = await cached_registry.get("vector_db", "test_vector_db")
|
||||
assert result_vector_db is not None
|
||||
assert result_vector_db.identifier == sample_vector_db.identifier
|
||||
assert result_vector_db.embedding_model == sample_vector_db.embedding_model
|
||||
assert result_vector_db.embedding_dimension == sample_vector_db.embedding_dimension
|
||||
assert result_vector_db.provider_id == sample_vector_db.provider_id
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
|
@ -116,29 +112,28 @@ async def test_cached_registry_updates(config):
|
|||
cached_registry = CachedDiskDistributionRegistry(await kvstore_impl(config))
|
||||
await cached_registry.initialize()
|
||||
|
||||
new_bank = VectorMemoryBank(
|
||||
identifier="test_bank_2",
|
||||
new_vector_db = VectorDB(
|
||||
identifier="test_vector_db_2",
|
||||
embedding_model="all-MiniLM-L6-v2",
|
||||
chunk_size_in_tokens=256,
|
||||
overlap_size_in_tokens=32,
|
||||
provider_resource_id="test_bank_2",
|
||||
embedding_dimension=384,
|
||||
provider_resource_id="test_vector_db_2",
|
||||
provider_id="baz",
|
||||
)
|
||||
await cached_registry.register(new_bank)
|
||||
await cached_registry.register(new_vector_db)
|
||||
|
||||
# Verify in cache
|
||||
result_bank = await cached_registry.get("memory_bank", "test_bank_2")
|
||||
assert result_bank is not None
|
||||
assert result_bank.identifier == new_bank.identifier
|
||||
assert result_bank.provider_id == new_bank.provider_id
|
||||
result_vector_db = await cached_registry.get("vector_db", "test_vector_db_2")
|
||||
assert result_vector_db is not None
|
||||
assert result_vector_db.identifier == new_vector_db.identifier
|
||||
assert result_vector_db.provider_id == new_vector_db.provider_id
|
||||
|
||||
# Verify persisted to disk
|
||||
new_registry = DiskDistributionRegistry(await kvstore_impl(config))
|
||||
await new_registry.initialize()
|
||||
result_bank = await new_registry.get("memory_bank", "test_bank_2")
|
||||
assert result_bank is not None
|
||||
assert result_bank.identifier == new_bank.identifier
|
||||
assert result_bank.provider_id == new_bank.provider_id
|
||||
result_vector_db = await new_registry.get("vector_db", "test_vector_db_2")
|
||||
assert result_vector_db is not None
|
||||
assert result_vector_db.identifier == new_vector_db.identifier
|
||||
assert result_vector_db.provider_id == new_vector_db.provider_id
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
|
@ -146,30 +141,28 @@ async def test_duplicate_provider_registration(config):
|
|||
cached_registry = CachedDiskDistributionRegistry(await kvstore_impl(config))
|
||||
await cached_registry.initialize()
|
||||
|
||||
original_bank = VectorMemoryBank(
|
||||
identifier="test_bank_2",
|
||||
original_vector_db = VectorDB(
|
||||
identifier="test_vector_db_2",
|
||||
embedding_model="all-MiniLM-L6-v2",
|
||||
chunk_size_in_tokens=256,
|
||||
overlap_size_in_tokens=32,
|
||||
provider_resource_id="test_bank_2",
|
||||
embedding_dimension=384,
|
||||
provider_resource_id="test_vector_db_2",
|
||||
provider_id="baz",
|
||||
)
|
||||
await cached_registry.register(original_bank)
|
||||
await cached_registry.register(original_vector_db)
|
||||
|
||||
duplicate_bank = VectorMemoryBank(
|
||||
identifier="test_bank_2",
|
||||
duplicate_vector_db = VectorDB(
|
||||
identifier="test_vector_db_2",
|
||||
embedding_model="different-model",
|
||||
chunk_size_in_tokens=128,
|
||||
overlap_size_in_tokens=16,
|
||||
provider_resource_id="test_bank_2",
|
||||
embedding_dimension=384,
|
||||
provider_resource_id="test_vector_db_2",
|
||||
provider_id="baz", # Same provider_id
|
||||
)
|
||||
await cached_registry.register(duplicate_bank)
|
||||
await cached_registry.register(duplicate_vector_db)
|
||||
|
||||
result = await cached_registry.get("memory_bank", "test_bank_2")
|
||||
result = await cached_registry.get("vector_db", "test_vector_db_2")
|
||||
assert result is not None
|
||||
assert (
|
||||
result.embedding_model == original_bank.embedding_model
|
||||
result.embedding_model == original_vector_db.embedding_model
|
||||
) # Original values preserved
|
||||
|
||||
|
||||
|
@ -179,36 +172,35 @@ async def test_get_all_objects(config):
|
|||
await cached_registry.initialize()
|
||||
|
||||
# Create multiple test banks
|
||||
test_banks = [
|
||||
VectorMemoryBank(
|
||||
identifier=f"test_bank_{i}",
|
||||
test_vector_dbs = [
|
||||
VectorDB(
|
||||
identifier=f"test_vector_db_{i}",
|
||||
embedding_model="all-MiniLM-L6-v2",
|
||||
chunk_size_in_tokens=256,
|
||||
overlap_size_in_tokens=32,
|
||||
provider_resource_id=f"test_bank_{i}",
|
||||
embedding_dimension=384,
|
||||
provider_resource_id=f"test_vector_db_{i}",
|
||||
provider_id=f"provider_{i}",
|
||||
)
|
||||
for i in range(3)
|
||||
]
|
||||
|
||||
# Register all banks
|
||||
for bank in test_banks:
|
||||
await cached_registry.register(bank)
|
||||
# Register all vector_dbs
|
||||
for vector_db in test_vector_dbs:
|
||||
await cached_registry.register(vector_db)
|
||||
|
||||
# Test get_all retrieval
|
||||
all_results = await cached_registry.get_all()
|
||||
assert len(all_results) == 3
|
||||
|
||||
# Verify each bank was stored correctly
|
||||
for original_bank in test_banks:
|
||||
matching_banks = [
|
||||
b for b in all_results if b.identifier == original_bank.identifier
|
||||
# Verify each vector_db was stored correctly
|
||||
for original_vector_db in test_vector_dbs:
|
||||
matching_vector_dbs = [
|
||||
v for v in all_results if v.identifier == original_vector_db.identifier
|
||||
]
|
||||
assert len(matching_banks) == 1
|
||||
stored_bank = matching_banks[0]
|
||||
assert stored_bank.embedding_model == original_bank.embedding_model
|
||||
assert stored_bank.provider_id == original_bank.provider_id
|
||||
assert stored_bank.chunk_size_in_tokens == original_bank.chunk_size_in_tokens
|
||||
assert len(matching_vector_dbs) == 1
|
||||
stored_vector_db = matching_vector_dbs[0]
|
||||
assert stored_vector_db.embedding_model == original_vector_db.embedding_model
|
||||
assert stored_vector_db.provider_id == original_vector_db.provider_id
|
||||
assert (
|
||||
stored_bank.overlap_size_in_tokens == original_bank.overlap_size_in_tokens
|
||||
stored_vector_db.embedding_dimension
|
||||
== original_vector_db.embedding_dimension
|
||||
)
|
||||
|
|
|
@ -1,23 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import streamlit as st
|
||||
from modules.api import llama_stack_api
|
||||
|
||||
|
||||
def memory_banks():
|
||||
st.header("Memory Banks")
|
||||
memory_banks_info = {
|
||||
m.identifier: m.to_dict() for m in llama_stack_api.client.memory_banks.list()
|
||||
}
|
||||
|
||||
if len(memory_banks_info) > 0:
|
||||
selected_memory_bank = st.selectbox(
|
||||
"Select a memory bank", list(memory_banks_info.keys())
|
||||
)
|
||||
st.json(memory_banks_info[selected_memory_bank])
|
||||
else:
|
||||
st.info("No memory banks found")
|
|
@ -6,10 +6,10 @@
|
|||
|
||||
from page.distribution.datasets import datasets
|
||||
from page.distribution.eval_tasks import eval_tasks
|
||||
from page.distribution.memory_banks import memory_banks
|
||||
from page.distribution.models import models
|
||||
from page.distribution.scoring_functions import scoring_functions
|
||||
from page.distribution.shields import shields
|
||||
from page.distribution.vector_dbs import vector_dbs
|
||||
|
||||
from streamlit_option_menu import option_menu
|
||||
|
||||
|
@ -17,7 +17,7 @@ from streamlit_option_menu import option_menu
|
|||
def resources_page():
|
||||
options = [
|
||||
"Models",
|
||||
"Memory Banks",
|
||||
"Vector Databases",
|
||||
"Shields",
|
||||
"Scoring Functions",
|
||||
"Datasets",
|
||||
|
@ -37,8 +37,8 @@ def resources_page():
|
|||
)
|
||||
if selected_resource == "Eval Tasks":
|
||||
eval_tasks()
|
||||
elif selected_resource == "Memory Banks":
|
||||
memory_banks()
|
||||
elif selected_resource == "Vector Databases":
|
||||
vector_dbs()
|
||||
elif selected_resource == "Datasets":
|
||||
datasets()
|
||||
elif selected_resource == "Models":
|
||||
|
|
23
llama_stack/distribution/ui/page/distribution/vector_dbs.py
Normal file
23
llama_stack/distribution/ui/page/distribution/vector_dbs.py
Normal file
|
@ -0,0 +1,23 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import streamlit as st
|
||||
from modules.api import llama_stack_api
|
||||
|
||||
|
||||
def vector_dbs():
|
||||
st.header("Vector Databases")
|
||||
vector_dbs_info = {
|
||||
v.identifier: v.to_dict() for v in llama_stack_api.client.vector_dbs.list()
|
||||
}
|
||||
|
||||
if len(vector_dbs_info) > 0:
|
||||
selected_vector_db = st.selectbox(
|
||||
"Select a vector database", list(vector_dbs_info.keys())
|
||||
)
|
||||
st.json(vector_dbs_info[selected_vector_db])
|
||||
else:
|
||||
st.info("No vector databases found")
|
|
@ -29,12 +29,12 @@ def rag_chat_page():
|
|||
if uploaded_files:
|
||||
st.success(f"Successfully uploaded {len(uploaded_files)} files")
|
||||
# Add memory bank name input field
|
||||
memory_bank_name = st.text_input(
|
||||
"Memory Bank Name",
|
||||
value="rag_bank",
|
||||
help="Enter a unique identifier for this memory bank",
|
||||
vector_db_name = st.text_input(
|
||||
"Vector Database Name",
|
||||
value="rag_vector_db",
|
||||
help="Enter a unique identifier for this vector database",
|
||||
)
|
||||
if st.button("Create Memory Bank"):
|
||||
if st.button("Create Vector Database"):
|
||||
documents = [
|
||||
Document(
|
||||
document_id=uploaded_file.name,
|
||||
|
@ -44,37 +44,33 @@ def rag_chat_page():
|
|||
]
|
||||
|
||||
providers = llama_stack_api.client.providers.list()
|
||||
memory_provider = None
|
||||
vector_io_provider = None
|
||||
|
||||
for x in providers:
|
||||
if x.api == "memory":
|
||||
memory_provider = x.provider_id
|
||||
if x.api == "vector_io":
|
||||
vector_io_provider = x.provider_id
|
||||
|
||||
llama_stack_api.client.memory_banks.register(
|
||||
memory_bank_id=memory_bank_name, # Use the user-provided name
|
||||
params={
|
||||
"memory_bank_type": "vector",
|
||||
"embedding_model": "all-MiniLM-L6-v2",
|
||||
"chunk_size_in_tokens": 512,
|
||||
"overlap_size_in_tokens": 64,
|
||||
},
|
||||
provider_id=memory_provider,
|
||||
llama_stack_api.client.vector_dbs.register(
|
||||
vector_db_id=vector_db_name, # Use the user-provided name
|
||||
embedding_dimension=384,
|
||||
embedding_model="all-MiniLM-L6-v2",
|
||||
provider_id=vector_io_provider,
|
||||
)
|
||||
|
||||
# insert documents using the custom bank name
|
||||
llama_stack_api.client.memory.insert(
|
||||
bank_id=memory_bank_name, # Use the user-provided name
|
||||
# insert documents using the custom vector db name
|
||||
llama_stack_api.client.tool_runtime.rag_tool.insert(
|
||||
vector_db_id=vector_db_name, # Use the user-provided name
|
||||
documents=documents,
|
||||
)
|
||||
st.success("Memory bank created successfully!")
|
||||
st.success("Vector database created successfully!")
|
||||
|
||||
st.subheader("Configure Agent")
|
||||
# select memory banks
|
||||
memory_banks = llama_stack_api.client.memory_banks.list()
|
||||
memory_banks = [bank.identifier for bank in memory_banks]
|
||||
selected_memory_banks = st.multiselect(
|
||||
"Select Memory Banks",
|
||||
memory_banks,
|
||||
vector_dbs = llama_stack_api.client.vector_dbs.list()
|
||||
vector_dbs = [vector_db.identifier for vector_db in vector_dbs]
|
||||
selected_vector_dbs = st.multiselect(
|
||||
"Select Vector Databases",
|
||||
vector_dbs,
|
||||
)
|
||||
|
||||
available_models = llama_stack_api.client.models.list()
|
||||
|
@ -141,14 +137,14 @@ def rag_chat_page():
|
|||
dict(
|
||||
name="builtin::memory",
|
||||
args={
|
||||
"memory_bank_ids": [bank_id for bank_id in selected_memory_banks],
|
||||
"vector_db_ids": [
|
||||
vector_db_id for vector_db_id in selected_vector_dbs
|
||||
],
|
||||
},
|
||||
)
|
||||
],
|
||||
tool_choice="auto",
|
||||
tool_prompt_format="json",
|
||||
input_shields=[],
|
||||
output_shields=[],
|
||||
enable_session_persistence=False,
|
||||
)
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue