[memory refactor][5/n] Migrate all vector_io providers (#835)

See https://github.com/meta-llama/llama-stack/issues/827 for the broader
design.

This PR finishes off all the stragglers and migrates everything to the
new naming.
This commit is contained in:
Ashwin Bharambe 2025-01-22 10:17:59 -08:00 committed by GitHub
parent 63f37f9b7c
commit c9e5578151
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
78 changed files with 504 additions and 623 deletions

View file

@ -1,23 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import streamlit as st
from modules.api import llama_stack_api
def memory_banks():
st.header("Memory Banks")
memory_banks_info = {
m.identifier: m.to_dict() for m in llama_stack_api.client.memory_banks.list()
}
if len(memory_banks_info) > 0:
selected_memory_bank = st.selectbox(
"Select a memory bank", list(memory_banks_info.keys())
)
st.json(memory_banks_info[selected_memory_bank])
else:
st.info("No memory banks found")

View file

@ -6,10 +6,10 @@
from page.distribution.datasets import datasets
from page.distribution.eval_tasks import eval_tasks
from page.distribution.memory_banks import memory_banks
from page.distribution.models import models
from page.distribution.scoring_functions import scoring_functions
from page.distribution.shields import shields
from page.distribution.vector_dbs import vector_dbs
from streamlit_option_menu import option_menu
@ -17,7 +17,7 @@ from streamlit_option_menu import option_menu
def resources_page():
options = [
"Models",
"Memory Banks",
"Vector Databases",
"Shields",
"Scoring Functions",
"Datasets",
@ -37,8 +37,8 @@ def resources_page():
)
if selected_resource == "Eval Tasks":
eval_tasks()
elif selected_resource == "Memory Banks":
memory_banks()
elif selected_resource == "Vector Databases":
vector_dbs()
elif selected_resource == "Datasets":
datasets()
elif selected_resource == "Models":

View file

@ -0,0 +1,23 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import streamlit as st
from modules.api import llama_stack_api
def vector_dbs():
st.header("Vector Databases")
vector_dbs_info = {
v.identifier: v.to_dict() for v in llama_stack_api.client.vector_dbs.list()
}
if len(vector_dbs_info) > 0:
selected_vector_db = st.selectbox(
"Select a vector database", list(vector_dbs_info.keys())
)
st.json(vector_dbs_info[selected_vector_db])
else:
st.info("No vector databases found")

View file

@ -29,12 +29,12 @@ def rag_chat_page():
if uploaded_files:
st.success(f"Successfully uploaded {len(uploaded_files)} files")
# Add memory bank name input field
memory_bank_name = st.text_input(
"Memory Bank Name",
value="rag_bank",
help="Enter a unique identifier for this memory bank",
vector_db_name = st.text_input(
"Vector Database Name",
value="rag_vector_db",
help="Enter a unique identifier for this vector database",
)
if st.button("Create Memory Bank"):
if st.button("Create Vector Database"):
documents = [
Document(
document_id=uploaded_file.name,
@ -44,37 +44,33 @@ def rag_chat_page():
]
providers = llama_stack_api.client.providers.list()
memory_provider = None
vector_io_provider = None
for x in providers:
if x.api == "memory":
memory_provider = x.provider_id
if x.api == "vector_io":
vector_io_provider = x.provider_id
llama_stack_api.client.memory_banks.register(
memory_bank_id=memory_bank_name, # Use the user-provided name
params={
"memory_bank_type": "vector",
"embedding_model": "all-MiniLM-L6-v2",
"chunk_size_in_tokens": 512,
"overlap_size_in_tokens": 64,
},
provider_id=memory_provider,
llama_stack_api.client.vector_dbs.register(
vector_db_id=vector_db_name, # Use the user-provided name
embedding_dimension=384,
embedding_model="all-MiniLM-L6-v2",
provider_id=vector_io_provider,
)
# insert documents using the custom bank name
llama_stack_api.client.memory.insert(
bank_id=memory_bank_name, # Use the user-provided name
# insert documents using the custom vector db name
llama_stack_api.client.tool_runtime.rag_tool.insert(
vector_db_id=vector_db_name, # Use the user-provided name
documents=documents,
)
st.success("Memory bank created successfully!")
st.success("Vector database created successfully!")
st.subheader("Configure Agent")
# select memory banks
memory_banks = llama_stack_api.client.memory_banks.list()
memory_banks = [bank.identifier for bank in memory_banks]
selected_memory_banks = st.multiselect(
"Select Memory Banks",
memory_banks,
vector_dbs = llama_stack_api.client.vector_dbs.list()
vector_dbs = [vector_db.identifier for vector_db in vector_dbs]
selected_vector_dbs = st.multiselect(
"Select Vector Databases",
vector_dbs,
)
available_models = llama_stack_api.client.models.list()
@ -141,14 +137,14 @@ def rag_chat_page():
dict(
name="builtin::memory",
args={
"memory_bank_ids": [bank_id for bank_id in selected_memory_banks],
"vector_db_ids": [
vector_db_id for vector_db_id in selected_vector_dbs
],
},
)
],
tool_choice="auto",
tool_prompt_format="json",
input_shields=[],
output_shields=[],
enable_session_persistence=False,
)