forked from phoenix-oss/llama-stack-mirror
[memory refactor][5/n] Migrate all vector_io providers (#835)
See https://github.com/meta-llama/llama-stack/issues/827 for the broader design. This PR finishes off all the stragglers and migrates everything to the new naming.
This commit is contained in:
parent
63f37f9b7c
commit
c9e5578151
78 changed files with 504 additions and 623 deletions
|
@ -12,21 +12,16 @@ from numpy.typing import NDArray
|
|||
from psycopg2 import sql
|
||||
from psycopg2.extras import execute_values, Json
|
||||
|
||||
from pydantic import BaseModel, parse_obj_as
|
||||
from pydantic import BaseModel, TypeAdapter
|
||||
|
||||
from llama_stack.apis.inference import InterleavedContent
|
||||
from llama_stack.apis.memory import (
|
||||
Chunk,
|
||||
Memory,
|
||||
MemoryBankDocument,
|
||||
QueryDocumentsResponse,
|
||||
)
|
||||
from llama_stack.apis.memory_banks import MemoryBank, MemoryBankType, VectorMemoryBank
|
||||
from llama_stack.providers.datatypes import Api, MemoryBanksProtocolPrivate
|
||||
from llama_stack.apis.vector_dbs import VectorDB
|
||||
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO
|
||||
from llama_stack.providers.datatypes import Api, VectorDBsProtocolPrivate
|
||||
|
||||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
BankWithIndex,
|
||||
EmbeddingIndex,
|
||||
VectorDBWithIndex,
|
||||
)
|
||||
|
||||
from .config import PGVectorConfig
|
||||
|
@ -50,20 +45,20 @@ def upsert_models(cur, keys_models: List[Tuple[str, BaseModel]]):
|
|||
"""
|
||||
)
|
||||
|
||||
values = [(key, Json(model.dict())) for key, model in keys_models]
|
||||
values = [(key, Json(model.model_dump())) for key, model in keys_models]
|
||||
execute_values(cur, query, values, template="(%s, %s)")
|
||||
|
||||
|
||||
def load_models(cur, cls):
|
||||
cur.execute("SELECT key, data FROM metadata_store")
|
||||
rows = cur.fetchall()
|
||||
return [parse_obj_as(cls, row["data"]) for row in rows]
|
||||
return [TypeAdapter(cls).validate_python(row["data"]) for row in rows]
|
||||
|
||||
|
||||
class PGVectorIndex(EmbeddingIndex):
|
||||
def __init__(self, bank: VectorMemoryBank, dimension: int, cursor):
|
||||
def __init__(self, vector_db: VectorDB, dimension: int, cursor):
|
||||
self.cursor = cursor
|
||||
self.table_name = f"vector_store_{bank.identifier}"
|
||||
self.table_name = f"vector_store_{vector_db.identifier}"
|
||||
|
||||
self.cursor.execute(
|
||||
f"""
|
||||
|
@ -85,7 +80,7 @@ class PGVectorIndex(EmbeddingIndex):
|
|||
values.append(
|
||||
(
|
||||
f"{chunk.document_id}:chunk-{i}",
|
||||
Json(chunk.dict()),
|
||||
Json(chunk.model_dump()),
|
||||
embeddings[i].tolist(),
|
||||
)
|
||||
)
|
||||
|
@ -101,7 +96,7 @@ class PGVectorIndex(EmbeddingIndex):
|
|||
|
||||
async def query(
|
||||
self, embedding: NDArray, k: int, score_threshold: float
|
||||
) -> QueryDocumentsResponse:
|
||||
) -> QueryChunksResponse:
|
||||
self.cursor.execute(
|
||||
f"""
|
||||
SELECT document, embedding <-> %s::vector AS distance
|
||||
|
@ -119,13 +114,13 @@ class PGVectorIndex(EmbeddingIndex):
|
|||
chunks.append(Chunk(**doc))
|
||||
scores.append(1.0 / float(dist))
|
||||
|
||||
return QueryDocumentsResponse(chunks=chunks, scores=scores)
|
||||
return QueryChunksResponse(chunks=chunks, scores=scores)
|
||||
|
||||
async def delete(self):
|
||||
self.cursor.execute(f"DROP TABLE IF EXISTS {self.table_name}")
|
||||
|
||||
|
||||
class PGVectorMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
|
||||
class PGVectorVectorDBAdapter(VectorIO, VectorDBsProtocolPrivate):
|
||||
def __init__(self, config: PGVectorConfig, inference_api: Api.inference) -> None:
|
||||
self.config = config
|
||||
self.inference_api = inference_api
|
||||
|
@ -167,46 +162,45 @@ class PGVectorMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
|
|||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
async def register_memory_bank(self, memory_bank: MemoryBank) -> None:
|
||||
assert (
|
||||
memory_bank.memory_bank_type == MemoryBankType.vector.value
|
||||
), f"Only vector banks are supported {memory_bank.memory_bank_type}"
|
||||
async def register_vector_db(self, vector_db: VectorDB) -> None:
|
||||
upsert_models(self.cursor, [(vector_db.identifier, vector_db)])
|
||||
|
||||
upsert_models(self.cursor, [(memory_bank.identifier, memory_bank)])
|
||||
index = PGVectorIndex(memory_bank, memory_bank.embedding_dimension, self.cursor)
|
||||
self.cache[memory_bank.identifier] = BankWithIndex(
|
||||
memory_bank, index, self.inference_api
|
||||
index = PGVectorIndex(vector_db, vector_db.embedding_dimension, self.cursor)
|
||||
self.cache[vector_db.identifier] = VectorDBWithIndex(
|
||||
vector_db, index, self.inference_api
|
||||
)
|
||||
|
||||
async def unregister_memory_bank(self, memory_bank_id: str) -> None:
|
||||
await self.cache[memory_bank_id].index.delete()
|
||||
del self.cache[memory_bank_id]
|
||||
async def unregister_vector_db(self, vector_db_id: str) -> None:
|
||||
await self.cache[vector_db_id].index.delete()
|
||||
del self.cache[vector_db_id]
|
||||
|
||||
async def insert_documents(
|
||||
async def insert_chunks(
|
||||
self,
|
||||
bank_id: str,
|
||||
documents: List[MemoryBankDocument],
|
||||
vector_db_id: str,
|
||||
chunks: List[Chunk],
|
||||
ttl_seconds: Optional[int] = None,
|
||||
) -> None:
|
||||
index = await self._get_and_cache_bank_index(bank_id)
|
||||
await index.insert_documents(documents)
|
||||
index = await self._get_and_cache_vector_db_index(vector_db_id)
|
||||
await index.insert_chunks(chunks)
|
||||
|
||||
async def query_documents(
|
||||
async def query_chunks(
|
||||
self,
|
||||
bank_id: str,
|
||||
vector_db_id: str,
|
||||
query: InterleavedContent,
|
||||
params: Optional[Dict[str, Any]] = None,
|
||||
) -> QueryDocumentsResponse:
|
||||
index = await self._get_and_cache_bank_index(bank_id)
|
||||
return await index.query_documents(query, params)
|
||||
) -> QueryChunksResponse:
|
||||
index = await self._get_and_cache_vector_db_index(vector_db_id)
|
||||
return await index.query_chunks(query, params)
|
||||
|
||||
self.inference_api = inference_api
|
||||
async def _get_and_cache_vector_db_index(
|
||||
self, vector_db_id: str
|
||||
) -> VectorDBWithIndex:
|
||||
if vector_db_id in self.cache:
|
||||
return self.cache[vector_db_id]
|
||||
|
||||
async def _get_and_cache_bank_index(self, bank_id: str) -> BankWithIndex:
|
||||
if bank_id in self.cache:
|
||||
return self.cache[bank_id]
|
||||
|
||||
bank = await self.memory_bank_store.get_memory_bank(bank_id)
|
||||
index = PGVectorIndex(bank, bank.embedding_dimension, self.cursor)
|
||||
self.cache[bank_id] = BankWithIndex(bank, index, self.inference_api)
|
||||
return self.cache[bank_id]
|
||||
vector_db = await self.vector_db_store.get_vector_db(vector_db_id)
|
||||
index = PGVectorIndex(vector_db, vector_db.embedding_dimension, self.cursor)
|
||||
self.cache[vector_db_id] = VectorDBWithIndex(
|
||||
vector_db, index, self.inference_api
|
||||
)
|
||||
return self.cache[vector_db_id]
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue