chore: remove llama_models.llama3.api imports from providers (#1107)

There should be a choke-point for llama3.api imports -- this is the
prompt adapter. Creating a ChatFormat() object on demand is inexpensive.
The underlying Tokenizer is a singleton anyway.
This commit is contained in:
Ashwin Bharambe 2025-02-19 19:01:29 -08:00 committed by GitHub
parent e9b8259cf9
commit cdcbeb005b
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
13 changed files with 77 additions and 113 deletions

View file

@ -9,7 +9,6 @@ import os
import uuid
from typing import AsyncGenerator, List, Optional
from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.tokenizer import Tokenizer
from vllm.engine.arg_utils import AsyncEngineArgs
from vllm.engine.async_llm_engine import AsyncLLMEngine
@ -62,7 +61,6 @@ class VLLMInferenceImpl(Inference, ModelsProtocolPrivate):
def __init__(self, config: VLLMConfig):
self.config = config
self.engine = None
self.formatter = ChatFormat(Tokenizer.get_instance())
async def initialize(self):
log.info("Initializing vLLM inference provider.")
@ -177,7 +175,7 @@ class VLLMInferenceImpl(Inference, ModelsProtocolPrivate):
log.info("Sampling params: %s", sampling_params)
request_id = _random_uuid()
prompt = await chat_completion_request_to_prompt(request, self.config.model, self.formatter)
prompt = await chat_completion_request_to_prompt(request, self.config.model)
vllm_sampling_params = self._sampling_params(request.sampling_params)
results_generator = self.engine.generate(prompt, vllm_sampling_params, request_id)
if stream:
@ -201,11 +199,13 @@ class VLLMInferenceImpl(Inference, ModelsProtocolPrivate):
response = OpenAICompatCompletionResponse(
choices=[choice],
)
return process_chat_completion_response(response, self.formatter, request)
return process_chat_completion_response(response, request)
async def _stream_chat_completion(
self, request: ChatCompletionRequest, results_generator: AsyncGenerator
) -> AsyncGenerator:
tokenizer = Tokenizer.get_instance()
async def _generate_and_convert_to_openai_compat():
cur = []
async for chunk in results_generator:
@ -216,7 +216,7 @@ class VLLMInferenceImpl(Inference, ModelsProtocolPrivate):
output = chunk.outputs[-1]
new_tokens = output.token_ids[len(cur) :]
text = self.formatter.tokenizer.decode(new_tokens)
text = tokenizer.decode(new_tokens)
cur.extend(new_tokens)
choice = OpenAICompatCompletionChoice(
finish_reason=output.finish_reason,
@ -227,7 +227,7 @@ class VLLMInferenceImpl(Inference, ModelsProtocolPrivate):
)
stream = _generate_and_convert_to_openai_compat()
async for chunk in process_chat_completion_stream_response(stream, self.formatter, request):
async for chunk in process_chat_completion_stream_response(stream, request):
yield chunk
async def embeddings(self, model_id: str, contents: List[InterleavedContent]) -> EmbeddingsResponse: