forked from phoenix-oss/llama-stack-mirror
chore: remove llama_models.llama3.api imports from providers (#1107)
There should be a choke-point for llama3.api imports -- this is the prompt adapter. Creating a ChatFormat() object on demand is inexpensive. The underlying Tokenizer is a singleton anyway.
This commit is contained in:
parent
e9b8259cf9
commit
cdcbeb005b
13 changed files with 77 additions and 113 deletions
|
@ -6,8 +6,6 @@
|
|||
|
||||
from typing import AsyncGenerator, List, Optional
|
||||
|
||||
from llama_models.llama3.api.chat_format import ChatFormat
|
||||
from llama_models.llama3.api.tokenizer import Tokenizer
|
||||
from openai import OpenAI
|
||||
|
||||
from llama_stack.apis.common.content_types import InterleavedContent
|
||||
|
@ -54,12 +52,8 @@ model_aliases = [
|
|||
|
||||
class DatabricksInferenceAdapter(ModelRegistryHelper, Inference):
|
||||
def __init__(self, config: DatabricksImplConfig) -> None:
|
||||
ModelRegistryHelper.__init__(
|
||||
self,
|
||||
model_aliases=model_aliases,
|
||||
)
|
||||
ModelRegistryHelper.__init__(self, model_aliases=model_aliases)
|
||||
self.config = config
|
||||
self.formatter = ChatFormat(Tokenizer.get_instance())
|
||||
|
||||
async def initialize(self) -> None:
|
||||
return
|
||||
|
@ -112,7 +106,7 @@ class DatabricksInferenceAdapter(ModelRegistryHelper, Inference):
|
|||
) -> ChatCompletionResponse:
|
||||
params = self._get_params(request)
|
||||
r = client.completions.create(**params)
|
||||
return process_chat_completion_response(r, self.formatter, request)
|
||||
return process_chat_completion_response(r, request)
|
||||
|
||||
async def _stream_chat_completion(self, request: ChatCompletionRequest, client: OpenAI) -> AsyncGenerator:
|
||||
params = self._get_params(request)
|
||||
|
@ -123,13 +117,13 @@ class DatabricksInferenceAdapter(ModelRegistryHelper, Inference):
|
|||
yield chunk
|
||||
|
||||
stream = _to_async_generator()
|
||||
async for chunk in process_chat_completion_stream_response(stream, self.formatter, request):
|
||||
async for chunk in process_chat_completion_stream_response(stream, request):
|
||||
yield chunk
|
||||
|
||||
def _get_params(self, request: ChatCompletionRequest) -> dict:
|
||||
return {
|
||||
"model": request.model,
|
||||
"prompt": chat_completion_request_to_prompt(request, self.get_llama_model(request.model), self.formatter),
|
||||
"prompt": chat_completion_request_to_prompt(request, self.get_llama_model(request.model)),
|
||||
"stream": request.stream,
|
||||
**get_sampling_options(request.sampling_params),
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue