chore: remove llama_models.llama3.api imports from providers (#1107)

There should be a choke-point for llama3.api imports -- this is the
prompt adapter. Creating a ChatFormat() object on demand is inexpensive.
The underlying Tokenizer is a singleton anyway.
This commit is contained in:
Ashwin Bharambe 2025-02-19 19:01:29 -08:00 committed by GitHub
parent e9b8259cf9
commit cdcbeb005b
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
13 changed files with 77 additions and 113 deletions

View file

@ -8,8 +8,6 @@ import logging
from typing import AsyncGenerator, List, Optional, Union
from llama_models.datatypes import StopReason, ToolCall
from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.tokenizer import Tokenizer
from openai import OpenAI
from llama_stack.apis.common.content_types import InterleavedContent, TextDelta, ToolCallDelta, ToolCallParseStatus
@ -191,7 +189,6 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
def __init__(self, config: VLLMInferenceAdapterConfig) -> None:
self.register_helper = ModelRegistryHelper(build_model_aliases())
self.config = config
self.formatter = ChatFormat(Tokenizer.get_instance())
self.client = None
async def initialize(self) -> None:
@ -286,14 +283,14 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
if len(request.tools) > 0:
res = _process_vllm_chat_completion_stream_response(stream)
else:
res = process_chat_completion_stream_response(stream, self.formatter, request)
res = process_chat_completion_stream_response(stream, request)
async for chunk in res:
yield chunk
async def _nonstream_completion(self, request: CompletionRequest) -> CompletionResponse:
params = await self._get_params(request)
r = self.client.completions.create(**params)
return process_completion_response(r, self.formatter)
return process_completion_response(r)
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
params = await self._get_params(request)
@ -305,7 +302,7 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
yield chunk
stream = _to_async_generator()
async for chunk in process_completion_stream_response(stream, self.formatter):
async for chunk in process_completion_stream_response(stream):
yield chunk
async def register_model(self, model: Model) -> Model:
@ -332,10 +329,7 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
input_dict["messages"] = [await convert_message_to_openai_dict(m, download=True) for m in request.messages]
else:
assert not request_has_media(request), "vLLM does not support media for Completion requests"
input_dict["prompt"] = await completion_request_to_prompt(
request,
self.formatter,
)
input_dict["prompt"] = await completion_request_to_prompt(request)
if fmt := request.response_format:
if fmt.type == ResponseFormatType.json_schema.value: