forked from phoenix-oss/llama-stack-mirror
Enable vision models for (Together, Fireworks, Meta-Reference, Ollama) (#376)
* Enable vision models for Together and Fireworks * Works with ollama 0.4.0 pre-release with the vision model * localize media for meta_reference inference * Fix
This commit is contained in:
parent
db30809141
commit
cde9bc1388
11 changed files with 465 additions and 81 deletions
|
@ -26,6 +26,8 @@ from llama_stack.providers.utils.inference.openai_compat import (
|
|||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
chat_completion_request_to_prompt,
|
||||
completion_request_to_prompt,
|
||||
convert_message_to_dict,
|
||||
request_has_media,
|
||||
)
|
||||
|
||||
from .config import FireworksImplConfig
|
||||
|
@ -82,14 +84,14 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference):
|
|||
async def _nonstream_completion(
|
||||
self, request: CompletionRequest, client: Fireworks
|
||||
) -> CompletionResponse:
|
||||
params = self._get_params(request)
|
||||
params = await self._get_params(request)
|
||||
r = await client.completion.acreate(**params)
|
||||
return process_completion_response(r, self.formatter)
|
||||
|
||||
async def _stream_completion(
|
||||
self, request: CompletionRequest, client: Fireworks
|
||||
) -> AsyncGenerator:
|
||||
params = self._get_params(request)
|
||||
params = await self._get_params(request)
|
||||
|
||||
stream = client.completion.acreate(**params)
|
||||
async for chunk in process_completion_stream_response(stream, self.formatter):
|
||||
|
@ -128,33 +130,55 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference):
|
|||
async def _nonstream_chat_completion(
|
||||
self, request: ChatCompletionRequest, client: Fireworks
|
||||
) -> ChatCompletionResponse:
|
||||
params = self._get_params(request)
|
||||
params = await self._get_params(request)
|
||||
if "messages" in params:
|
||||
r = await client.chat.completions.acreate(**params)
|
||||
else:
|
||||
r = await client.completion.acreate(**params)
|
||||
return process_chat_completion_response(r, self.formatter)
|
||||
|
||||
async def _stream_chat_completion(
|
||||
self, request: ChatCompletionRequest, client: Fireworks
|
||||
) -> AsyncGenerator:
|
||||
params = self._get_params(request)
|
||||
params = await self._get_params(request)
|
||||
|
||||
if "messages" in params:
|
||||
stream = client.chat.completions.acreate(**params)
|
||||
else:
|
||||
stream = client.completion.acreate(**params)
|
||||
|
||||
async for chunk in process_chat_completion_stream_response(
|
||||
stream, self.formatter
|
||||
):
|
||||
yield chunk
|
||||
|
||||
def _get_params(self, request) -> dict:
|
||||
prompt = ""
|
||||
if type(request) == ChatCompletionRequest:
|
||||
prompt = chat_completion_request_to_prompt(request, self.formatter)
|
||||
elif type(request) == CompletionRequest:
|
||||
prompt = completion_request_to_prompt(request, self.formatter)
|
||||
async def _get_params(
|
||||
self, request: Union[ChatCompletionRequest, CompletionRequest]
|
||||
) -> dict:
|
||||
input_dict = {}
|
||||
media_present = request_has_media(request)
|
||||
|
||||
if isinstance(request, ChatCompletionRequest):
|
||||
if media_present:
|
||||
input_dict["messages"] = [
|
||||
await convert_message_to_dict(m) for m in request.messages
|
||||
]
|
||||
else:
|
||||
input_dict["prompt"] = chat_completion_request_to_prompt(
|
||||
request, self.formatter
|
||||
)
|
||||
elif isinstance(request, CompletionRequest):
|
||||
assert (
|
||||
not media_present
|
||||
), "Fireworks does not support media for Completion requests"
|
||||
input_dict["prompt"] = completion_request_to_prompt(request, self.formatter)
|
||||
else:
|
||||
raise ValueError(f"Unknown request type {type(request)}")
|
||||
|
||||
# Fireworks always prepends with BOS
|
||||
if prompt.startswith("<|begin_of_text|>"):
|
||||
prompt = prompt[len("<|begin_of_text|>") :]
|
||||
if "prompt" in input_dict:
|
||||
if input_dict["prompt"].startswith("<|begin_of_text|>"):
|
||||
input_dict["prompt"] = input_dict["prompt"][len("<|begin_of_text|>") :]
|
||||
|
||||
options = get_sampling_options(request.sampling_params)
|
||||
options.setdefault("max_tokens", 512)
|
||||
|
@ -172,9 +196,10 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference):
|
|||
}
|
||||
else:
|
||||
raise ValueError(f"Unknown response format {fmt.type}")
|
||||
|
||||
return {
|
||||
"model": self.map_to_provider_model(request.model),
|
||||
"prompt": prompt,
|
||||
**input_dict,
|
||||
"stream": request.stream,
|
||||
**options,
|
||||
}
|
||||
|
|
|
@ -29,6 +29,8 @@ from llama_stack.providers.utils.inference.openai_compat import (
|
|||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
chat_completion_request_to_prompt,
|
||||
completion_request_to_prompt,
|
||||
convert_image_media_to_url,
|
||||
request_has_media,
|
||||
)
|
||||
|
||||
OLLAMA_SUPPORTED_MODELS = {
|
||||
|
@ -38,6 +40,7 @@ OLLAMA_SUPPORTED_MODELS = {
|
|||
"Llama3.2-3B-Instruct": "llama3.2:3b-instruct-fp16",
|
||||
"Llama-Guard-3-8B": "llama-guard3:8b",
|
||||
"Llama-Guard-3-1B": "llama-guard3:1b",
|
||||
"Llama3.2-11B-Vision-Instruct": "x/llama3.2-vision:11b-instruct-fp16",
|
||||
}
|
||||
|
||||
|
||||
|
@ -109,22 +112,8 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
else:
|
||||
return await self._nonstream_completion(request)
|
||||
|
||||
def _get_params_for_completion(self, request: CompletionRequest) -> dict:
|
||||
sampling_options = get_sampling_options(request.sampling_params)
|
||||
# This is needed since the Ollama API expects num_predict to be set
|
||||
# for early truncation instead of max_tokens.
|
||||
if sampling_options["max_tokens"] is not None:
|
||||
sampling_options["num_predict"] = sampling_options["max_tokens"]
|
||||
return {
|
||||
"model": OLLAMA_SUPPORTED_MODELS[request.model],
|
||||
"prompt": completion_request_to_prompt(request, self.formatter),
|
||||
"options": sampling_options,
|
||||
"raw": True,
|
||||
"stream": request.stream,
|
||||
}
|
||||
|
||||
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
|
||||
params = self._get_params_for_completion(request)
|
||||
params = await self._get_params(request)
|
||||
|
||||
async def _generate_and_convert_to_openai_compat():
|
||||
s = await self.client.generate(**params)
|
||||
|
@ -142,7 +131,7 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
yield chunk
|
||||
|
||||
async def _nonstream_completion(self, request: CompletionRequest) -> AsyncGenerator:
|
||||
params = self._get_params_for_completion(request)
|
||||
params = await self._get_params(request)
|
||||
r = await self.client.generate(**params)
|
||||
assert isinstance(r, dict)
|
||||
|
||||
|
@ -183,22 +172,62 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
else:
|
||||
return await self._nonstream_chat_completion(request)
|
||||
|
||||
def _get_params(self, request: ChatCompletionRequest) -> dict:
|
||||
async def _get_params(
|
||||
self, request: Union[ChatCompletionRequest, CompletionRequest]
|
||||
) -> dict:
|
||||
sampling_options = get_sampling_options(request.sampling_params)
|
||||
# This is needed since the Ollama API expects num_predict to be set
|
||||
# for early truncation instead of max_tokens.
|
||||
if sampling_options.get("max_tokens") is not None:
|
||||
sampling_options["num_predict"] = sampling_options["max_tokens"]
|
||||
|
||||
input_dict = {}
|
||||
media_present = request_has_media(request)
|
||||
if isinstance(request, ChatCompletionRequest):
|
||||
if media_present:
|
||||
contents = [
|
||||
await convert_message_to_dict_for_ollama(m)
|
||||
for m in request.messages
|
||||
]
|
||||
# flatten the list of lists
|
||||
input_dict["messages"] = [
|
||||
item for sublist in contents for item in sublist
|
||||
]
|
||||
else:
|
||||
input_dict["raw"] = True
|
||||
input_dict["prompt"] = chat_completion_request_to_prompt(
|
||||
request, self.formatter
|
||||
)
|
||||
else:
|
||||
assert (
|
||||
not media_present
|
||||
), "Ollama does not support media for Completion requests"
|
||||
input_dict["prompt"] = completion_request_to_prompt(request, self.formatter)
|
||||
input_dict["raw"] = True
|
||||
|
||||
return {
|
||||
"model": OLLAMA_SUPPORTED_MODELS[request.model],
|
||||
"prompt": chat_completion_request_to_prompt(request, self.formatter),
|
||||
"options": get_sampling_options(request.sampling_params),
|
||||
"raw": True,
|
||||
**input_dict,
|
||||
"options": sampling_options,
|
||||
"stream": request.stream,
|
||||
}
|
||||
|
||||
async def _nonstream_chat_completion(
|
||||
self, request: ChatCompletionRequest
|
||||
) -> ChatCompletionResponse:
|
||||
params = self._get_params(request)
|
||||
params = await self._get_params(request)
|
||||
if "messages" in params:
|
||||
r = await self.client.chat(**params)
|
||||
else:
|
||||
r = await self.client.generate(**params)
|
||||
assert isinstance(r, dict)
|
||||
|
||||
if "message" in r:
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
finish_reason=r["done_reason"] if r["done"] else None,
|
||||
text=r["message"]["content"],
|
||||
)
|
||||
else:
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
finish_reason=r["done_reason"] if r["done"] else None,
|
||||
text=r["response"],
|
||||
|
@ -211,11 +240,20 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
async def _stream_chat_completion(
|
||||
self, request: ChatCompletionRequest
|
||||
) -> AsyncGenerator:
|
||||
params = self._get_params(request)
|
||||
params = await self._get_params(request)
|
||||
|
||||
async def _generate_and_convert_to_openai_compat():
|
||||
if "messages" in params:
|
||||
s = await self.client.chat(**params)
|
||||
else:
|
||||
s = await self.client.generate(**params)
|
||||
async for chunk in s:
|
||||
if "message" in chunk:
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
finish_reason=chunk["done_reason"] if chunk["done"] else None,
|
||||
text=chunk["message"]["content"],
|
||||
)
|
||||
else:
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
finish_reason=chunk["done_reason"] if chunk["done"] else None,
|
||||
text=chunk["response"],
|
||||
|
@ -236,3 +274,26 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
contents: List[InterleavedTextMedia],
|
||||
) -> EmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
||||
|
||||
async def convert_message_to_dict_for_ollama(message: Message) -> List[dict]:
|
||||
async def _convert_content(content) -> dict:
|
||||
if isinstance(content, ImageMedia):
|
||||
return {
|
||||
"role": message.role,
|
||||
"images": [
|
||||
await convert_image_media_to_url(
|
||||
content, download=True, include_format=False
|
||||
)
|
||||
],
|
||||
}
|
||||
else:
|
||||
return {
|
||||
"role": message.role,
|
||||
"content": content,
|
||||
}
|
||||
|
||||
if isinstance(message.content, list):
|
||||
return [await _convert_content(c) for c in message.content]
|
||||
else:
|
||||
return [await _convert_content(message.content)]
|
||||
|
|
|
@ -26,6 +26,8 @@ from llama_stack.providers.utils.inference.openai_compat import (
|
|||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
chat_completion_request_to_prompt,
|
||||
completion_request_to_prompt,
|
||||
convert_message_to_dict,
|
||||
request_has_media,
|
||||
)
|
||||
|
||||
from .config import TogetherImplConfig
|
||||
|
@ -97,12 +99,12 @@ class TogetherInferenceAdapter(
|
|||
async def _nonstream_completion(
|
||||
self, request: CompletionRequest
|
||||
) -> ChatCompletionResponse:
|
||||
params = self._get_params_for_completion(request)
|
||||
params = await self._get_params(request)
|
||||
r = self._get_client().completions.create(**params)
|
||||
return process_completion_response(r, self.formatter)
|
||||
|
||||
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
|
||||
params = self._get_params_for_completion(request)
|
||||
params = await self._get_params(request)
|
||||
|
||||
# if we shift to TogetherAsyncClient, we won't need this wrapper
|
||||
async def _to_async_generator():
|
||||
|
@ -131,14 +133,6 @@ class TogetherInferenceAdapter(
|
|||
|
||||
return options
|
||||
|
||||
def _get_params_for_completion(self, request: CompletionRequest) -> dict:
|
||||
return {
|
||||
"model": self.map_to_provider_model(request.model),
|
||||
"prompt": completion_request_to_prompt(request, self.formatter),
|
||||
"stream": request.stream,
|
||||
**self._build_options(request.sampling_params, request.response_format),
|
||||
}
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
|
@ -171,17 +165,23 @@ class TogetherInferenceAdapter(
|
|||
async def _nonstream_chat_completion(
|
||||
self, request: ChatCompletionRequest
|
||||
) -> ChatCompletionResponse:
|
||||
params = self._get_params(request)
|
||||
params = await self._get_params(request)
|
||||
if "messages" in params:
|
||||
r = self._get_client().chat.completions.create(**params)
|
||||
else:
|
||||
r = self._get_client().completions.create(**params)
|
||||
return process_chat_completion_response(r, self.formatter)
|
||||
|
||||
async def _stream_chat_completion(
|
||||
self, request: ChatCompletionRequest
|
||||
) -> AsyncGenerator:
|
||||
params = self._get_params(request)
|
||||
params = await self._get_params(request)
|
||||
|
||||
# if we shift to TogetherAsyncClient, we won't need this wrapper
|
||||
async def _to_async_generator():
|
||||
if "messages" in params:
|
||||
s = self._get_client().chat.completions.create(**params)
|
||||
else:
|
||||
s = self._get_client().completions.create(**params)
|
||||
for chunk in s:
|
||||
yield chunk
|
||||
|
@ -192,10 +192,29 @@ class TogetherInferenceAdapter(
|
|||
):
|
||||
yield chunk
|
||||
|
||||
def _get_params(self, request: ChatCompletionRequest) -> dict:
|
||||
async def _get_params(
|
||||
self, request: Union[ChatCompletionRequest, CompletionRequest]
|
||||
) -> dict:
|
||||
input_dict = {}
|
||||
media_present = request_has_media(request)
|
||||
if isinstance(request, ChatCompletionRequest):
|
||||
if media_present:
|
||||
input_dict["messages"] = [
|
||||
await convert_message_to_dict(m) for m in request.messages
|
||||
]
|
||||
else:
|
||||
input_dict["prompt"] = chat_completion_request_to_prompt(
|
||||
request, self.formatter
|
||||
)
|
||||
else:
|
||||
assert (
|
||||
not media_present
|
||||
), "Together does not support media for Completion requests"
|
||||
input_dict["prompt"] = completion_request_to_prompt(request, self.formatter)
|
||||
|
||||
return {
|
||||
"model": self.map_to_provider_model(request.model),
|
||||
"prompt": chat_completion_request_to_prompt(request, self.formatter),
|
||||
**input_dict,
|
||||
"stream": request.stream,
|
||||
**self._build_options(request.sampling_params, request.response_format),
|
||||
}
|
||||
|
|
|
@ -14,6 +14,11 @@ from llama_models.llama3.api.datatypes import * # noqa: F403
|
|||
from llama_stack.apis.inference import * # noqa: F403
|
||||
from llama_stack.providers.datatypes import ModelDef, ModelsProtocolPrivate
|
||||
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
convert_image_media_to_url,
|
||||
request_has_media,
|
||||
)
|
||||
|
||||
from .config import MetaReferenceInferenceConfig
|
||||
from .generation import Llama
|
||||
from .model_parallel import LlamaModelParallelGenerator
|
||||
|
@ -87,6 +92,7 @@ class MetaReferenceInferenceImpl(Inference, ModelsProtocolPrivate):
|
|||
logprobs=logprobs,
|
||||
)
|
||||
self.check_model(request)
|
||||
request = await request_with_localized_media(request)
|
||||
|
||||
if request.stream:
|
||||
return self._stream_completion(request)
|
||||
|
@ -211,6 +217,7 @@ class MetaReferenceInferenceImpl(Inference, ModelsProtocolPrivate):
|
|||
logprobs=logprobs,
|
||||
)
|
||||
self.check_model(request)
|
||||
request = await request_with_localized_media(request)
|
||||
|
||||
if self.config.create_distributed_process_group:
|
||||
if SEMAPHORE.locked():
|
||||
|
@ -388,3 +395,31 @@ class MetaReferenceInferenceImpl(Inference, ModelsProtocolPrivate):
|
|||
contents: List[InterleavedTextMedia],
|
||||
) -> EmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
||||
|
||||
async def request_with_localized_media(
|
||||
request: Union[ChatCompletionRequest, CompletionRequest],
|
||||
) -> Union[ChatCompletionRequest, CompletionRequest]:
|
||||
if not request_has_media(request):
|
||||
return request
|
||||
|
||||
async def _convert_single_content(content):
|
||||
if isinstance(content, ImageMedia):
|
||||
url = await convert_image_media_to_url(content, download=True)
|
||||
return ImageMedia(image=URL(uri=url))
|
||||
else:
|
||||
return content
|
||||
|
||||
async def _convert_content(content):
|
||||
if isinstance(content, list):
|
||||
return [await _convert_single_content(c) for c in content]
|
||||
else:
|
||||
return await _convert_single_content(content)
|
||||
|
||||
if isinstance(request, ChatCompletionRequest):
|
||||
for m in request.messages:
|
||||
m.content = await _convert_content(m.content)
|
||||
else:
|
||||
request.content = await _convert_content(request.content)
|
||||
|
||||
return request
|
||||
|
|
|
@ -19,12 +19,11 @@ def pytest_addoption(parser):
|
|||
|
||||
|
||||
def pytest_configure(config):
|
||||
for model in ["llama_8b", "llama_3b", "llama_vision"]:
|
||||
config.addinivalue_line(
|
||||
"markers", "llama_8b: mark test to run only with the given model"
|
||||
)
|
||||
config.addinivalue_line(
|
||||
"markers", "llama_3b: mark test to run only with the given model"
|
||||
"markers", f"{model}: mark test to run only with the given model"
|
||||
)
|
||||
|
||||
for fixture_name in INFERENCE_FIXTURES:
|
||||
config.addinivalue_line(
|
||||
"markers",
|
||||
|
@ -37,12 +36,24 @@ MODEL_PARAMS = [
|
|||
pytest.param("Llama3.2-3B-Instruct", marks=pytest.mark.llama_3b, id="llama_3b"),
|
||||
]
|
||||
|
||||
VISION_MODEL_PARAMS = [
|
||||
pytest.param(
|
||||
"Llama3.2-11B-Vision-Instruct",
|
||||
marks=pytest.mark.llama_vision,
|
||||
id="llama_vision",
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
def pytest_generate_tests(metafunc):
|
||||
if "inference_model" in metafunc.fixturenames:
|
||||
model = metafunc.config.getoption("--inference-model")
|
||||
if model:
|
||||
params = [pytest.param(model, id="")]
|
||||
else:
|
||||
cls_name = metafunc.cls.__name__
|
||||
if "Vision" in cls_name:
|
||||
params = VISION_MODEL_PARAMS
|
||||
else:
|
||||
params = MODEL_PARAMS
|
||||
|
||||
|
|
BIN
llama_stack/providers/tests/inference/pasta.jpeg
Normal file
BIN
llama_stack/providers/tests/inference/pasta.jpeg
Normal file
Binary file not shown.
After Width: | Height: | Size: 438 KiB |
|
@ -4,7 +4,6 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import itertools
|
||||
|
||||
import pytest
|
||||
|
||||
|
@ -15,6 +14,9 @@ from llama_stack.apis.inference import * # noqa: F403
|
|||
|
||||
from llama_stack.distribution.datatypes import * # noqa: F403
|
||||
|
||||
from .utils import group_chunks
|
||||
|
||||
|
||||
# How to run this test:
|
||||
#
|
||||
# pytest -v -s llama_stack/providers/tests/inference/test_inference.py
|
||||
|
@ -22,15 +24,6 @@ from llama_stack.distribution.datatypes import * # noqa: F403
|
|||
# --env FIREWORKS_API_KEY=<your_api_key>
|
||||
|
||||
|
||||
def group_chunks(response):
|
||||
return {
|
||||
event_type: list(group)
|
||||
for event_type, group in itertools.groupby(
|
||||
response, key=lambda chunk: chunk.event.event_type
|
||||
)
|
||||
}
|
||||
|
||||
|
||||
def get_expected_stop_reason(model: str):
|
||||
return StopReason.end_of_message if "Llama3.1" in model else StopReason.end_of_turn
|
||||
|
||||
|
|
128
llama_stack/providers/tests/inference/test_vision_inference.py
Normal file
128
llama_stack/providers/tests/inference/test_vision_inference.py
Normal file
|
@ -0,0 +1,128 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
import pytest
|
||||
from PIL import Image as PIL_Image
|
||||
|
||||
|
||||
from llama_models.llama3.api.datatypes import * # noqa: F403
|
||||
from llama_stack.apis.inference import * # noqa: F403
|
||||
|
||||
from .utils import group_chunks
|
||||
|
||||
THIS_DIR = Path(__file__).parent
|
||||
|
||||
|
||||
class TestVisionModelInference:
|
||||
@pytest.mark.asyncio
|
||||
async def test_vision_chat_completion_non_streaming(
|
||||
self, inference_model, inference_stack
|
||||
):
|
||||
inference_impl, _ = inference_stack
|
||||
|
||||
provider = inference_impl.routing_table.get_provider_impl(inference_model)
|
||||
if provider.__provider_spec__.provider_type not in (
|
||||
"meta-reference",
|
||||
"remote::together",
|
||||
"remote::fireworks",
|
||||
"remote::ollama",
|
||||
):
|
||||
pytest.skip(
|
||||
"Other inference providers don't support vision chat completion() yet"
|
||||
)
|
||||
|
||||
images = [
|
||||
ImageMedia(image=PIL_Image.open(THIS_DIR / "pasta.jpeg")),
|
||||
ImageMedia(
|
||||
image=URL(
|
||||
uri="https://www.healthypawspetinsurance.com/Images/V3/DogAndPuppyInsurance/Dog_CTA_Desktop_HeroImage.jpg"
|
||||
)
|
||||
),
|
||||
]
|
||||
|
||||
# These are a bit hit-and-miss, need to be careful
|
||||
expected_strings_to_check = [
|
||||
["spaghetti"],
|
||||
["puppy"],
|
||||
]
|
||||
for image, expected_strings in zip(images, expected_strings_to_check):
|
||||
response = await inference_impl.chat_completion(
|
||||
model=inference_model,
|
||||
messages=[
|
||||
SystemMessage(content="You are a helpful assistant."),
|
||||
UserMessage(
|
||||
content=[image, "Describe this image in two sentences."]
|
||||
),
|
||||
],
|
||||
stream=False,
|
||||
)
|
||||
|
||||
assert isinstance(response, ChatCompletionResponse)
|
||||
assert response.completion_message.role == "assistant"
|
||||
assert isinstance(response.completion_message.content, str)
|
||||
for expected_string in expected_strings:
|
||||
assert expected_string in response.completion_message.content
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_vision_chat_completion_streaming(
|
||||
self, inference_model, inference_stack
|
||||
):
|
||||
inference_impl, _ = inference_stack
|
||||
|
||||
provider = inference_impl.routing_table.get_provider_impl(inference_model)
|
||||
if provider.__provider_spec__.provider_type not in (
|
||||
"meta-reference",
|
||||
"remote::together",
|
||||
"remote::fireworks",
|
||||
"remote::ollama",
|
||||
):
|
||||
pytest.skip(
|
||||
"Other inference providers don't support vision chat completion() yet"
|
||||
)
|
||||
|
||||
images = [
|
||||
ImageMedia(
|
||||
image=URL(
|
||||
uri="https://www.healthypawspetinsurance.com/Images/V3/DogAndPuppyInsurance/Dog_CTA_Desktop_HeroImage.jpg"
|
||||
)
|
||||
),
|
||||
]
|
||||
expected_strings_to_check = [
|
||||
["puppy"],
|
||||
]
|
||||
for image, expected_strings in zip(images, expected_strings_to_check):
|
||||
response = [
|
||||
r
|
||||
async for r in await inference_impl.chat_completion(
|
||||
model=inference_model,
|
||||
messages=[
|
||||
SystemMessage(content="You are a helpful assistant."),
|
||||
UserMessage(
|
||||
content=[image, "Describe this image in two sentences."]
|
||||
),
|
||||
],
|
||||
stream=True,
|
||||
)
|
||||
]
|
||||
|
||||
assert len(response) > 0
|
||||
assert all(
|
||||
isinstance(chunk, ChatCompletionResponseStreamChunk)
|
||||
for chunk in response
|
||||
)
|
||||
grouped = group_chunks(response)
|
||||
assert len(grouped[ChatCompletionResponseEventType.start]) == 1
|
||||
assert len(grouped[ChatCompletionResponseEventType.progress]) > 0
|
||||
assert len(grouped[ChatCompletionResponseEventType.complete]) == 1
|
||||
|
||||
content = "".join(
|
||||
chunk.event.delta
|
||||
for chunk in grouped[ChatCompletionResponseEventType.progress]
|
||||
)
|
||||
for expected_string in expected_strings:
|
||||
assert expected_string in content
|
16
llama_stack/providers/tests/inference/utils.py
Normal file
16
llama_stack/providers/tests/inference/utils.py
Normal file
|
@ -0,0 +1,16 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import itertools
|
||||
|
||||
|
||||
def group_chunks(response):
|
||||
return {
|
||||
event_type: list(group)
|
||||
for event_type, group in itertools.groupby(
|
||||
response, key=lambda chunk: chunk.event.event_type
|
||||
)
|
||||
}
|
|
@ -46,6 +46,9 @@ def text_from_choice(choice) -> str:
|
|||
if hasattr(choice, "delta") and choice.delta:
|
||||
return choice.delta.content
|
||||
|
||||
if hasattr(choice, "message"):
|
||||
return choice.message.content
|
||||
|
||||
return choice.text
|
||||
|
||||
|
||||
|
@ -99,7 +102,6 @@ def process_chat_completion_response(
|
|||
async def process_completion_stream_response(
|
||||
stream: AsyncGenerator[OpenAICompatCompletionResponse, None], formatter: ChatFormat
|
||||
) -> AsyncGenerator:
|
||||
|
||||
stop_reason = None
|
||||
|
||||
async for chunk in stream:
|
||||
|
@ -158,6 +160,10 @@ async def process_chat_completion_stream_response(
|
|||
break
|
||||
|
||||
text = text_from_choice(choice)
|
||||
if not text:
|
||||
# Sometimes you get empty chunks from providers
|
||||
continue
|
||||
|
||||
# check if its a tool call ( aka starts with <|python_tag|> )
|
||||
if not ipython and text.startswith("<|python_tag|>"):
|
||||
ipython = True
|
||||
|
|
|
@ -3,10 +3,16 @@
|
|||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import base64
|
||||
import io
|
||||
import json
|
||||
from typing import Tuple
|
||||
|
||||
import httpx
|
||||
|
||||
from llama_models.llama3.api.chat_format import ChatFormat
|
||||
from PIL import Image as PIL_Image
|
||||
from termcolor import cprint
|
||||
|
||||
from llama_models.llama3.api.datatypes import * # noqa: F403
|
||||
|
@ -24,6 +30,90 @@ from llama_models.sku_list import resolve_model
|
|||
from llama_stack.providers.utils.inference import supported_inference_models
|
||||
|
||||
|
||||
def content_has_media(content: InterleavedTextMedia):
|
||||
def _has_media_content(c):
|
||||
return isinstance(c, ImageMedia)
|
||||
|
||||
if isinstance(content, list):
|
||||
return any(_has_media_content(c) for c in content)
|
||||
else:
|
||||
return _has_media_content(content)
|
||||
|
||||
|
||||
def messages_have_media(messages: List[Message]):
|
||||
return any(content_has_media(m.content) for m in messages)
|
||||
|
||||
|
||||
def request_has_media(request: Union[ChatCompletionRequest, CompletionRequest]):
|
||||
if isinstance(request, ChatCompletionRequest):
|
||||
return messages_have_media(request.messages)
|
||||
else:
|
||||
return content_has_media(request.content)
|
||||
|
||||
|
||||
async def convert_image_media_to_url(
|
||||
media: ImageMedia, download: bool = False, include_format: bool = True
|
||||
) -> str:
|
||||
if isinstance(media.image, PIL_Image.Image):
|
||||
if media.image.format == "PNG":
|
||||
format = "png"
|
||||
elif media.image.format == "GIF":
|
||||
format = "gif"
|
||||
elif media.image.format == "JPEG":
|
||||
format = "jpeg"
|
||||
else:
|
||||
raise ValueError(f"Unsupported image format {media.image.format}")
|
||||
|
||||
bytestream = io.BytesIO()
|
||||
media.image.save(bytestream, format=media.image.format)
|
||||
bytestream.seek(0)
|
||||
content = bytestream.getvalue()
|
||||
else:
|
||||
if not download:
|
||||
return media.image.uri
|
||||
else:
|
||||
assert isinstance(media.image, URL)
|
||||
async with httpx.AsyncClient() as client:
|
||||
r = await client.get(media.image.uri)
|
||||
content = r.content
|
||||
content_type = r.headers.get("content-type")
|
||||
if content_type:
|
||||
format = content_type.split("/")[-1]
|
||||
else:
|
||||
format = "png"
|
||||
|
||||
if include_format:
|
||||
return f"data:image/{format};base64," + base64.b64encode(content).decode(
|
||||
"utf-8"
|
||||
)
|
||||
else:
|
||||
return base64.b64encode(content).decode("utf-8")
|
||||
|
||||
|
||||
async def convert_message_to_dict(message: Message) -> dict:
|
||||
async def _convert_content(content) -> dict:
|
||||
if isinstance(content, ImageMedia):
|
||||
return {
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": await convert_image_media_to_url(content),
|
||||
},
|
||||
}
|
||||
else:
|
||||
assert isinstance(content, str)
|
||||
return {"type": "text", "text": content}
|
||||
|
||||
if isinstance(message.content, list):
|
||||
content = [await _convert_content(c) for c in message.content]
|
||||
else:
|
||||
content = [await _convert_content(message.content)]
|
||||
|
||||
return {
|
||||
"role": message.role,
|
||||
"content": content,
|
||||
}
|
||||
|
||||
|
||||
def completion_request_to_prompt(
|
||||
request: CompletionRequest, formatter: ChatFormat
|
||||
) -> str:
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue