Add safety impl for llama guard vision

This commit is contained in:
Ashwin Bharambe 2024-09-25 11:06:59 -07:00
parent b3b0349931
commit d442af0818
3 changed files with 182 additions and 76 deletions

View file

@ -7,11 +7,11 @@
from .config import SafetyConfig
async def get_provider_impl(config: SafetyConfig, _deps):
async def get_provider_impl(config: SafetyConfig, deps):
from .safety import MetaReferenceSafetyImpl
assert isinstance(config, SafetyConfig), f"Unexpected config type: {type(config)}"
impl = MetaReferenceSafetyImpl(config)
impl = MetaReferenceSafetyImpl(config, deps)
await impl.initialize()
return impl

View file

@ -7,8 +7,10 @@
from llama_models.sku_list import resolve_model
from llama_stack.distribution.utils.model_utils import model_local_dir
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.apis.safety import * # noqa: F403
from llama_models.llama3.api.datatypes import * # noqa: F403
from llama_stack.distribution.datatypes import Api
from llama_stack.providers.impls.meta_reference.safety.shields.base import (
OnViolationAction,
@ -34,20 +36,11 @@ def resolve_and_get_path(model_name: str) -> str:
class MetaReferenceSafetyImpl(Safety):
def __init__(self, config: SafetyConfig) -> None:
def __init__(self, config: SafetyConfig, deps) -> None:
self.config = config
self.inference_api = deps[Api.inference]
async def initialize(self) -> None:
shield_cfg = self.config.llama_guard_shield
if shield_cfg is not None:
model_dir = resolve_and_get_path(shield_cfg.model)
_ = LlamaGuardShield.instance(
model_dir=model_dir,
excluded_categories=shield_cfg.excluded_categories,
disable_input_check=shield_cfg.disable_input_check,
disable_output_check=shield_cfg.disable_output_check,
)
shield_cfg = self.config.prompt_guard_shield
if shield_cfg is not None:
model_dir = resolve_and_get_path(shield_cfg.model)
@ -91,11 +84,18 @@ class MetaReferenceSafetyImpl(Safety):
def get_shield_impl(self, typ: MetaReferenceShieldType) -> ShieldBase:
cfg = self.config
if typ == MetaReferenceShieldType.llama_guard:
cfg = cfg.llama_guard_shield
assert (
cfg.llama_guard_shield is not None
cfg is not None
), "Cannot use LlamaGuardShield since not present in config"
model_dir = resolve_and_get_path(cfg.llama_guard_shield.model)
return LlamaGuardShield.instance(model_dir=model_dir)
model_dir = resolve_and_get_path(cfg.model)
return LlamaGuardShield(
model_dir=model_dir,
excluded_categories=cfg.excluded_categories,
disable_input_check=cfg.disable_input_check,
disable_output_check=cfg.disable_output_check,
)
elif typ == MetaReferenceShieldType.jailbreak_shield:
assert (
cfg.prompt_guard_shield is not None

View file

@ -10,8 +10,12 @@ from string import Template
from typing import List, Optional
import torch
from llama_models.llama3.api.datatypes import Message, Role
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
MllamaForConditionalGeneration,
MllamaProcessor,
)
from .base import CANNED_RESPONSE_TEXT, OnViolationAction, ShieldBase, ShieldResponse
@ -67,10 +71,22 @@ DEFAULT_LG_V3_SAFETY_CATEGORIES = [
CAT_SELF_HARM,
CAT_SEXUAL_CONTENT,
CAT_ELECTIONS,
CAT_CODE_INTERPRETER_ABUSE,
]
PROMPT_TASK = "Task: Check if there is unsafe content in '$agent_type' messages in conversations according our safety policy with the below categories."
# model names
LG_3_8B = "Llama-Guard-3-8B"
LG_3_1B = "Llama-Guard-3-1B"
LG_3_11B_VISION = "Llama-Guard-3-11B-Vision"
MODEL_TO_SAFETY_CATEGORIES_MAP = {
LG_3_8B: DEFAULT_LG_V3_SAFETY_CATEGORIES + [CAT_CODE_INTERPRETER_ABUSE],
LG_3_1B: DEFAULT_LG_V3_SAFETY_CATEGORIES,
LG_3_11B_VISION: DEFAULT_LG_V3_SAFETY_CATEGORIES,
}
PROMPT_TASK = "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\nTask: Check if there is unsafe content in '$agent_type' messages in conversations according our safety policy with the below categories."
SAFETY_CATEGORIES = """
@ -91,7 +107,7 @@ $conversations
PROMPT_INSTRUCTIONS = """
Provide your safety assessment for ONLY THE LAST $agent_type message in the above conversation:
- First line must read 'safe' or 'unsafe'.
- If unsafe, a second line must include a comma-separated list of violated categories."""
- If unsafe, a second line must include a comma-separated list of violated categories. <|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
PROMPT_TEMPLATE = Template(
@ -100,38 +116,21 @@ PROMPT_TEMPLATE = Template(
class LlamaGuardShield(ShieldBase):
@staticmethod
def instance(
on_violation_action=OnViolationAction.RAISE,
model_dir: str = None,
excluded_categories: List[str] = None,
disable_input_check: bool = False,
disable_output_check: bool = False,
) -> "LlamaGuardShield":
global _INSTANCE
if _INSTANCE is None:
_INSTANCE = LlamaGuardShield(
on_violation_action,
model_dir,
excluded_categories,
disable_input_check,
disable_output_check,
)
return _INSTANCE
def __init__(
self,
on_violation_action: OnViolationAction = OnViolationAction.RAISE,
model_dir: str = None,
model_dir: str,
excluded_categories: List[str] = None,
disable_input_check: bool = False,
disable_output_check: bool = False,
on_violation_action: OnViolationAction = OnViolationAction.RAISE,
):
super().__init__(on_violation_action)
dtype = torch.bfloat16
self.model_dir = model_dir
self.device = "cuda"
assert model_dir is not None, "Llama Guard model_dir is None"
assert self.model_dir is not None, "Llama Guard model_dir is None"
if excluded_categories is None:
excluded_categories = []
@ -140,17 +139,24 @@ class LlamaGuardShield(ShieldBase):
x in SAFETY_CATEGORIES_TO_CODE_MAP.values() for x in excluded_categories
), "Invalid categories in excluded categories. Expected format is ['S1', 'S2', ..]"
self.device = "cuda"
self.excluded_categories = excluded_categories
self.disable_input_check = disable_input_check
self.disable_output_check = disable_output_check
# load model
torch_dtype = torch.bfloat16
self.tokenizer = AutoTokenizer.from_pretrained(model_dir)
self.model = AutoModelForCausalLM.from_pretrained(
model_dir, torch_dtype=torch_dtype, device_map=self.device
)
if self.is_lg_vision():
self.model = MllamaForConditionalGeneration.from_pretrained(
self.model_dir, device_map=self.device, torch_dtype=torch_dtype
)
self.processor = MllamaProcessor.from_pretrained(self.model_dir)
else:
self.tokenizer = AutoTokenizer.from_pretrained(self.model_dir)
self.model = AutoModelForCausalLM.from_pretrained(
self.model_dir, torch_dtype=torch_dtype, device_map=self.device
)
def check_unsafe_response(self, response: str) -> Optional[str]:
match = re.match(r"^unsafe\n(.*)$", response)
@ -166,14 +172,15 @@ class LlamaGuardShield(ShieldBase):
if set(excluded_categories) == set(SAFETY_CATEGORIES_TO_CODE_MAP.values()):
excluded_categories = []
categories = []
for cat in DEFAULT_LG_V3_SAFETY_CATEGORIES:
final_categories = []
all_categories = MODEL_TO_SAFETY_CATEGORIES_MAP[self.get_model_name()]
for cat in all_categories:
cat_code = SAFETY_CATEGORIES_TO_CODE_MAP[cat]
if cat_code in excluded_categories:
continue
categories.append(f"{cat_code}: {cat}.")
final_categories.append(f"{cat_code}: {cat}.")
return categories
return final_categories
def build_prompt(self, messages: List[Message]) -> str:
categories = self.get_safety_categories()
@ -188,6 +195,7 @@ class LlamaGuardShield(ShieldBase):
)
def get_shield_response(self, response: str) -> ShieldResponse:
response = response.strip()
if response == SAFE_RESPONSE:
return ShieldResponse(is_violation=False)
unsafe_code = self.check_unsafe_response(response)
@ -203,7 +211,119 @@ class LlamaGuardShield(ShieldBase):
raise ValueError(f"Unexpected response: {response}")
def build_mm_prompt(self, messages: List[Message]) -> str:
conversation = []
most_recent_img = None
for m in messages[::-1]:
if isinstance(m.content, str):
conversation.append(
{
"role": m.role,
"content": [{"type": "text", "text": m.content}],
}
)
elif isinstance(m.content, ImageMedia):
if most_recent_img is None and m.role == Role.user.value:
most_recent_img = m.content
conversation.append(
{
"role": m.role,
"content": [{"type": "image"}],
}
)
elif isinstance(m.content, list):
content = []
for c in m.content:
if isinstance(c, str):
content.append({"type": "text", "text": c})
elif isinstance(c, ImageMedia):
if most_recent_img is None and m.role == Role.user.value:
most_recent_img = c
content.append({"type": "image"})
else:
raise ValueError(f"Unknown content type: {c}")
conversation.append(
{
"role": m.role,
"content": content,
}
)
else:
raise ValueError(f"Unknown content type: {m.content}")
return conversation[::-1], most_recent_img
async def run_lg_mm(self, messages: List[Message]) -> ShieldResponse:
formatted_messages, most_recent_img = self.build_mm_prompt(messages)
raw_image = None
if most_recent_img:
raw_image = interleaved_text_media_localize(most_recent_img)
raw_image = raw_image.image
llama_guard_input_templ_applied = self.processor.apply_chat_template(
formatted_messages,
add_generation_prompt=True,
tokenize=False,
skip_special_tokens=False,
)
inputs = self.processor(
text=llama_guard_input_templ_applied, images=raw_image, return_tensors="pt"
).to(self.device)
output = self.model.generate(**inputs, do_sample=False, max_new_tokens=50)
response = self.processor.decode(
output[0][len(inputs["input_ids"][0]) :], skip_special_tokens=True
)
shield_response = self.get_shield_response(response)
return shield_response
async def run_lg_text(self, messages: List[Message]):
prompt = self.build_prompt(messages)
input_ids = self.tokenizer.encode(prompt, return_tensors="pt").to(self.device)
prompt_len = input_ids.shape[1]
output = self.model.generate(
input_ids=input_ids,
max_new_tokens=20,
output_scores=True,
return_dict_in_generate=True,
pad_token_id=0,
)
generated_tokens = output.sequences[:, prompt_len:]
response = self.tokenizer.decode(generated_tokens[0], skip_special_tokens=True)
shield_response = self.get_shield_response(response)
return shield_response
def get_model_name(self):
return self.model_dir.split("/")[-1]
def is_lg_vision(self):
model_name = self.get_model_name()
return model_name == LG_3_11B_VISION
def validate_messages(self, messages: List[Message]) -> None:
if len(messages) == 0:
raise ValueError("Messages must not be empty")
if messages[0].role != Role.user.value:
raise ValueError("Messages must start with user")
if len(messages) >= 2 and (
messages[0].role == Role.user.value and messages[1].role == Role.user.value
):
messages = messages[1:]
for i in range(1, len(messages)):
if messages[i].role == messages[i - 1].role:
raise ValueError(
f"Messages must alternate between user and assistant. Message {i} has the same role as message {i-1}"
)
return messages
async def run(self, messages: List[Message]) -> ShieldResponse:
messages = self.validate_messages(messages)
if self.disable_input_check and messages[-1].role == Role.user.value:
return ShieldResponse(is_violation=False)
elif self.disable_output_check and messages[-1].role == Role.assistant.value:
@ -211,27 +331,13 @@ class LlamaGuardShield(ShieldBase):
is_violation=False,
)
else:
prompt = self.build_prompt(messages)
llama_guard_input = {
"role": "user",
"content": prompt,
}
input_ids = self.tokenizer.apply_chat_template(
[llama_guard_input], return_tensors="pt", tokenize=True
).to(self.device)
prompt_len = input_ids.shape[1]
output = self.model.generate(
input_ids=input_ids,
max_new_tokens=20,
output_scores=True,
return_dict_in_generate=True,
pad_token_id=0,
)
generated_tokens = output.sequences[:, prompt_len:]
response = self.tokenizer.decode(
generated_tokens[0], skip_special_tokens=True
)
response = response.strip()
shield_response = self.get_shield_response(response)
return shield_response
if self.is_lg_vision():
shield_response = await self.run_lg_mm(messages)
else:
shield_response = await self.run_lg_text(messages)
return shield_response