forked from phoenix-oss/llama-stack-mirror
fix: logprobs support in remote-vllm provider (#1074)
# What does this PR do? The remote-vllm provider was not passing logprobs options from CompletionRequest or ChatCompletionRequests through to the OpenAI client parameters. I manually verified this, as well as observed this provider failing `TestInference::test_completion_logprobs`. This was filed as issue #1073. This fixes that by passing the `logprobs.top_k` value through to the parameters we pass into the OpenAI client. Additionally, this fixes a bug in `test_text_inference.py` where it mistakenly assumed chunk.delta were of type `ContentDelta` for completion requests. The deltas are of type `ContentDelta` for chat completion requests, but for basic completion requests the deltas are of type string. This test was likely failing for other providers that did properly support logprobs because of this latter issue in the test, which was hit while fixing the above issue with the remote-vllm provider. (Closes #1073) ## Test Plan First, you need a vllm running. I ran one locally like this: ``` vllm serve meta-llama/Llama-3.2-3B-Instruct --port 8001 --enable-auto-tool-choice --tool-call-parser llama3_json ``` Next, run test_text_inference.py against this vllm using the remote vllm provider like this: ``` VLLM_URL="http://localhost:8001/v1" python -m pytest -s -v llama_stack/providers/tests/inference/test_text_inference.py --providers "inference=vllm_remote" ``` Before my change, the test failed with this error: ``` llama_stack/providers/tests/inference/test_text_inference.py:155: in test_completion_logprobs assert 1 <= len(response.logprobs) <= 5 E TypeError: object of type 'NoneType' has no len() ``` After my change, the test passes. [//]: # (## Documentation) Signed-off-by: Ben Browning <bbrownin@redhat.com>
This commit is contained in:
parent
8c01b7f05a
commit
dd1a366347
2 changed files with 4 additions and 1 deletions
|
@ -345,6 +345,9 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
else:
|
||||
raise ValueError(f"Unknown response format {fmt.type}")
|
||||
|
||||
if request.logprobs and request.logprobs.top_k:
|
||||
input_dict["logprobs"] = request.logprobs.top_k
|
||||
|
||||
return {
|
||||
"model": request.model,
|
||||
**input_dict,
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue